/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (c) 2003-2017, University of Amsterdam VU University Amsterdam All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(rdf_db, [ rdf_version/1, % -Version rdf/3, % ?Subject, ?Predicate, ?Object rdf/4, % ?Subject, ?Predicate, ?Object, ?DB rdf_has/3, % ?Subject, +Pred, ?Obj rdf_has/4, % ?Subject, +Pred, ?Obj, -RealPred rdf_reachable/3, % ?Subject, +Pred, ?Object rdf_reachable/5, % ?Subject, +Pred, ?Object, +MaxD, ?D rdf_resource/1, % ?Resource rdf_subject/1, % ?Subject rdf_member_property/2, % ?Property, ?Index rdf_assert/3, % +Subject, +Predicate, +Object rdf_assert/4, % +Subject, +Predicate, +Object, +DB rdf_retractall/3, % ?Subject, ?Predicate, ?Object rdf_retractall/4, % ?Subject, ?Predicate, ?Object, +DB rdf_update/4, % +Subject, +Predicate, +Object, +Act rdf_update/5, % +Subject, +Predicate, +Object, +Src, +Act rdf_set_predicate/2, % +Predicate, +Property rdf_predicate_property/2, % +Predicate, ?Property rdf_current_predicate/1, % -Predicate rdf_current_literal/1, % -Literal rdf_transaction/1, % :Goal rdf_transaction/2, % :Goal, +Id rdf_transaction/3, % :Goal, +Id, +Options rdf_active_transaction/1, % ?Id rdf_monitor/2, % :Goal, +Options rdf_save_db/1, % +File rdf_save_db/2, % +File, +DB rdf_load_db/1, % +File rdf_reset_db/0, rdf_node/1, % -Id rdf_bnode/1, % -Id rdf_is_bnode/1, % +Id rdf_is_resource/1, % +Term rdf_is_literal/1, % +Term rdf_literal_value/2, % +Term, -Value rdf_load/1, % +File rdf_load/2, % +File, +Options rdf_save/1, % +File rdf_save/2, % +File, +Options rdf_unload/1, % +File rdf_unload_graph/1, % +Graph rdf_md5/2, % +DB, -MD5 rdf_atom_md5/3, % +Text, +Times, -MD5 rdf_create_graph/1, % ?Graph rdf_graph_property/2, % ?Graph, ?Property rdf_set_graph/2, % +Graph, +Property rdf_graph/1, % ?Graph rdf_source/1, % ?File rdf_source/2, % ?DB, ?SourceURL rdf_make/0, % Reload modified databases rdf_gc/0, % Garbage collection rdf_source_location/2, % +Subject, -Source rdf_statistics/1, % -Key rdf_set/1, % +Term rdf_generation/1, % -Generation rdf_snapshot/1, % -Snapshot rdf_delete_snapshot/1, % +Snapshot rdf_current_snapshot/1, % +Snapshot rdf_estimate_complexity/4, % +S,+P,+O,-Count rdf_save_subject/3, % +Stream, +Subject, +DB rdf_save_header/2, % +Out, +Options rdf_save_footer/1, % +Out rdf_equal/2, % ?Resource, ?Resource lang_equal/2, % +Lang1, +Lang2 lang_matches/2, % +Lang, +Pattern rdf_prefix/2, % :Alias, +URI rdf_current_prefix/2, % :Alias, ?URI rdf_register_prefix/2, % +Alias, +URI rdf_register_prefix/3, % +Alias, +URI, +Options rdf_current_ns/2, % :Alias, ?URI rdf_register_ns/2, % +Alias, +URI rdf_register_ns/3, % +Alias, +URI, +Options rdf_global_id/2, % ?NS:Name, :Global rdf_global_object/2, % +Object, :NSExpandedObject rdf_global_term/2, % +Term, :WithExpandedNS rdf_compare/3, % -Dif, +Object1, +Object2 rdf_match_label/3, % +How, +String, +Label rdf_split_url/3, % ?Base, ?Local, ?URL rdf_url_namespace/2, % +URL, ?Base rdf_warm_indexes/0, rdf_warm_indexes/1, % +Indexed rdf_update_duplicates/0, rdf_debug/1, % Set verbosity rdf_new_literal_map/1, % -Handle rdf_destroy_literal_map/1, % +Handle rdf_reset_literal_map/1, % +Handle rdf_insert_literal_map/3, % +Handle, +Key, +Literal rdf_insert_literal_map/4, % +Handle, +Key, +Literal, -NewKeys rdf_delete_literal_map/3, % +Handle, +Key, +Literal rdf_delete_literal_map/2, % +Handle, +Key rdf_find_literal_map/3, % +Handle, +KeyList, -Literals rdf_keys_in_literal_map/3, % +Handle, +Spec, -Keys rdf_statistics_literal_map/2, % +Handle, +Name(-Arg...) rdf_graph_prefixes/2, % ?Graph, -Prefixes rdf_graph_prefixes/3, % ?Graph, -Prefixes, :Filter (rdf_meta)/1, % +Heads op(1150, fx, (rdf_meta)) ]). :- use_module(library(rdf)). :- use_module(library(lists)). :- use_module(library(pairs)). :- use_module(library(shlib)). :- use_module(library(gensym)). :- use_module(library(sgml)). :- use_module(library(sgml_write)). :- use_module(library(option)). :- use_module(library(error)). :- use_module(library(uri)). :- use_module(library(debug)). :- use_module(library(apply)). :- use_module(library(xsdp_types)). :- if(exists_source(library(thread))). :- use_module(library(thread)). :- endif. :- use_module(library(semweb/rdf_cache)). :- use_foreign_library(foreign(rdf_db)). :- public rdf_print_predicate_cloud/2. % print matrix of reachable predicates :- meta_predicate rdf_current_prefix(:, -), rdf_current_ns(:, -), rdf_global_id(?, :), rdf_global_term(+, :), rdf_global_object(+, :), rdf_transaction(0), rdf_transaction(0, +), rdf_transaction(0, +, +), rdf_monitor(1, +), rdf_save(+, :), rdf_load(+, :). :- predicate_options(rdf_graph_prefixes/3, 3, [expand(callable), filter(callable), min_count(nonneg)]). :- predicate_options(rdf_load/2, 2, [ base_uri(atom), cache(boolean), concurrent(positive_integer), db(atom), format(oneof([xml,triples,turtle,trig,nquads,ntriples])), graph(atom), if(oneof([true,changed,not_loaded])), modified(-float), silent(boolean), register_namespaces(boolean) ]). :- predicate_options(rdf_register_ns/3, 3, [force(boolean), keep(boolean)]). :- predicate_options(rdf_save/2, 2, [ graph(atom), db(atom), anon(boolean), base_uri(atom), write_xml_base(boolean), convert_typed_literal(callable), encoding(encoding), document_language(atom), namespaces(list(atom)), xml_attributes(boolean), inline(boolean) ]). :- predicate_options(rdf_save_header/2, 2, [ graph(atom), db(atom), namespaces(list(atom)) ]). :- predicate_options(rdf_save_subject/3, 3, [ graph(atom), base_uri(atom), convert_typed_literal(callable), document_language(atom) ]). :- predicate_options(rdf_transaction/3, 3, [ snapshot(any) ]). :- multifile ns/2. :- dynamic ns/2. % ID, URL :- discontiguous term_expansion/2. /** Core RDF database The file library(semweb/rdf_db) provides the core of the SWI-Prolog RDF store. @deprecated New applications should use library(semweb/rdf11), which provides a much more intuitive API to the RDF store, notably for handling literals. The library(semweb/rdf11) runs currently on top of this library and both can run side-by-side in the same application. Terms retrieved from the database however have a different shape and can not be exchanged without precautions. */ /******************************* * PREFIXES * *******************************/ %! rdf_current_prefix(:Alias, ?URI) is nondet. % % Query predefined prefixes and prefixes defined with % rdf_register_prefix/2 and local prefixes defined with % rdf_prefix/2. If Alias is unbound and one URI is the prefix of % another, the longest is returned first. This allows turning a % resource into a prefix/local couple using the simple enumeration % below. See rdf_global_id/2. % % == % rdf_current_prefix(Prefix, Expansion), % atom_concat(Expansion, Local, URI), % == rdf_current_prefix(Module:Alias, URI) :- nonvar(Alias), !, rdf_current_prefix(Module, Alias, URI), !. rdf_current_prefix(Module:Alias, URI) :- rdf_current_prefix(Module, Alias, URI). rdf_current_prefix(system, Alias, URI) :- !, ns(Alias, URI). rdf_current_prefix(Module, Alias, URI) :- default_module(Module, M), ( M == system -> ns(Alias, URI) ; '$flushed_predicate'(M:'rdf prefix'(_,_)), call(M:'rdf prefix'(Alias,URI)) ). %! rdf_prefix(:Alias, +URI) is det. % % Register a _local_ prefix. This declaration takes precedence % over globally defined prefixes using rdf_register_prefix/2,3. % Module local prefixes are notably required to deal with SWISH, % where users need to be able to have independent namespace % declarations. rdf_prefix(Alias, URI) :- throw(error(context_error(nodirective, rdf_prefix(Alias, URI)), _)). system:term_expansion((:- rdf_prefix(AliasSpec, URI)), Clauses) :- prolog_load_context(module, Module), strip_module(Module:AliasSpec, TM, Alias), must_be(atom, Alias), must_be(atom, URI), ( rdf_current_prefix(TM:Alias, URI) -> Clauses = [] ; TM == Module -> Clauses = 'rdf prefix'(Alias, URI) ; Clauses = TM:'rdf prefix'(Alias, URI) ). %! ns(?Alias, ?URI) is nondet. % % Dynamic and multifile predicate that maintains the registered % namespace aliases. % % @deprecated New code must modify the namespace table using % rdf_register_ns/3 and query using rdf_current_ns/2. ns(dc, 'http://purl.org/dc/elements/1.1/'). ns(dcterms, 'http://purl.org/dc/terms/'). ns(eor, 'http://dublincore.org/2000/03/13/eor#'). ns(foaf, 'http://xmlns.com/foaf/0.1/'). ns(owl, 'http://www.w3.org/2002/07/owl#'). ns(rdf, 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'). ns(rdfs, 'http://www.w3.org/2000/01/rdf-schema#'). ns(serql, 'http://www.openrdf.org/schema/serql#'). ns(skos, 'http://www.w3.org/2004/02/skos/core#'). ns(void, 'http://rdfs.org/ns/void#'). ns(xsd, 'http://www.w3.org/2001/XMLSchema#'). %! rdf_register_prefix(+Prefix, +URI) is det. %! rdf_register_prefix(+Prefix, +URI, +Options) is det. % % Register Prefix as an abbreviation for URI. Options: % % * force(Boolean) % If =true=, Replace existing namespace alias. Please note % that replacing a namespace is dangerous as namespaces % affect preprocessing. Make sure all code that depends on % a namespace is compiled after changing the registration. % % * keep(Boolean) % If =true= and Alias is already defined, keep the % original binding for Prefix and succeed silently. % % Without options, an attempt to redefine an alias raises a % permission error. % % Predefined prefixes are: % % | **Alias** | **IRI prefix** | % | dc | http://purl.org/dc/elements/1.1/ | % | dcterms | http://purl.org/dc/terms/ | % | eor | http://dublincore.org/2000/03/13/eor# | % | foaf | http://xmlns.com/foaf/0.1/ | % | owl | http://www.w3.org/2002/07/owl# | % | rdf | http://www.w3.org/1999/02/22-rdf-syntax-ns# | % | rdfs | http://www.w3.org/2000/01/rdf-schema# | % | serql | http://www.openrdf.org/schema/serql# | % | skos | http://www.w3.org/2004/02/skos/core# | % | void | http://rdfs.org/ns/void# | % | xsd | http://www.w3.org/2001/XMLSchema# | rdf_register_prefix(Alias, URI) :- rdf_register_prefix(Alias, URI, []). rdf_register_prefix(Alias, URI, Options) :- must_be(atom, Alias), must_be(atom, URI), ( rdf_current_prefix(system:Alias, URI) -> true ; register_global_prefix(Alias, URI, Options) ). %! register_global_prefix(+Alias, +URI, +Options) % % Register a global prefix. register_global_prefix(Alias, URI, Options) :- ns(Alias, _), !, ( option(force(true), Options, false) -> retractall(ns(Alias, _)), rdf_register_prefix(Alias, URI, Options), rdf_empty_prefix_cache ; option(keep(true), Options, false) -> true ; throw(error(permission_error(register, namespace, Alias), context(_, 'Already defined'))) ). register_global_prefix(Alias, URI, _) :- findall(P-U, prefix_conflict(URI, P, U), Pairs), order_prefixes([Alias-URI|Pairs], Ordered), forall(member(P-U, Pairs), retract(ns(P,U))), forall(member(P-U, Ordered), assert(ns(P,U))). prefix_conflict(URI, P, U) :- ns(P,U), ( sub_atom(URI, 0, _, _, U) -> true ; sub_atom(U, 0, _, _, URI) ). order_prefixes(Pairs, Sorted) :- map_list_to_pairs(prefix_uri_length, Pairs, ByLen), sort(1, >=, ByLen, SortedByLen), pairs_values(SortedByLen, Sorted). prefix_uri_length(_-URI, Len) :- atom_length(URI, Len). %! rdf_current_ns(:Prefix, ?URI) is nondet. % % @deprecated. Use rdf_current_prefix/2. rdf_current_ns(Prefix, URI) :- rdf_current_prefix(Prefix, URI). %! rdf_register_ns(:Prefix, ?URI) is det. %! rdf_register_ns(:Prefix, ?URI, +Options) is det. % % Register an RDF prefix. % % @deprecated. Use rdf_register_prefix/2 or rdf_register_prefix/3. rdf_register_ns(Prefix, URI) :- rdf_register_prefix(Prefix, URI). rdf_register_ns(Prefix, URI, Options) :- rdf_register_prefix(Prefix, URI, Options). %! register_file_ns(+Map:list(pair)) is det. % % Register a namespace as encounted in the namespace list of an % RDF document. We only register if both the abbreviation and URL % are not already known. Is there a better way? This code could % also do checks on the consistency of RDF and other well-known % namespaces. % % @tbd Better error handling register_file_ns([]) :- !. register_file_ns([Decl|T]) :- !, register_file_ns(Decl), register_file_ns(T). register_file_ns([]=_) :- !. % xmlns= (overall default) register_file_ns(NS=URL) :- % compatibility !, register_file_ns(NS-URL). register_file_ns(NS-URL) :- ( ns(NS, URL) -> true ; ns(NS, _) -> true % redefined abbreviation ; ns(_, URL) -> true % redefined URL ; rdf_register_ns(NS, URL) ). %! rdf_global_id(?IRISpec, :IRI) is semidet. % % Convert between Prefix:Local and full IRI (an atom). If IRISpec is % an atom, it is simply unified with IRI. This predicate fails % silently if IRI is an RDF literal. % % Note that this predicate is a meta-predicate on its output argument. % This is necessary to get the module context while the first argument % may be of the form (:)/2. The above mode description is correct, but % should be interpreted as (?,?). % % @error existence_error(rdf_prefix, Prefix) % @see rdf_equal/2 provides a compile time alternative % @see The rdf_meta/1 directive asks for compile time expansion % of arguments. % @bug Error handling is incomplete. In its current implementation % the same code is used for compile-time expansion and to % facilitate runtime conversion and checking. These use cases % have different requirements. rdf_global_id(Id, Module:Global) :- rdf_global_id(Id, Global, Module). rdf_global_id(NS:Local, Global, Module) :- global(NS, Local, Global, Module), !. rdf_global_id(Global, Global, _). %! rdf_global_object(+Object, :GlobalObject) is semidet. %! rdf_global_object(-Object, :GlobalObject) is semidet. % % Same as rdf_global_id/2, but intended for dealing with the % object part of a triple, in particular the type for typed % literals. Note that the predicate is a meta-predicate on the % output argument. This is necessary to get the module context % while the first argument may be of the form (:)/2. % % @error existence_error(rdf_prefix, Prefix) rdf_global_object(Object, Module:GlobalObject) :- rdf_global_object(Object, GlobalObject, Module). rdf_global_object(Var, Global, _M) :- var(Var), !, Global = Var. rdf_global_object(Prefix:Local, Global, M) :- global(Prefix, Local, Global, M), !. rdf_global_object(literal(type(Prefix:Local, Value)), literal(type(Global, Value)), M) :- global(Prefix, Local, Global, M), !. rdf_global_object(^^(Value,Prefix:Local), ^^(Value,Global), M) :- global(Prefix, Local, Global, M), !. rdf_global_object(literal(Query0, type(Prefix:Local, Value)), literal(Query1, type(Global, Value)), M) :- global(Prefix, Local, Global, M), !, rdf_global_term(Query0, Query1, M). rdf_global_object(literal(Query0, Value), literal(Query1, Value), M) :- !, rdf_global_term(Query0, Query1, M). rdf_global_object(Global, Global, _). global(Prefix, Local, Global, Module) :- ( atom(Global) -> rdf_current_prefix(Module:Prefix, Full), atom_concat(Full, Local, Global) ; atom(Prefix), atom(Local), var(Global) -> ( rdf_current_prefix(Module:Prefix, Full) *-> atom_concat(Full, Local, Global) ; current_prolog_flag(xref, true) -> Global = Prefix:Local ; existence_error(rdf_prefix, Prefix) ) ). %! rdf_global_term(+TermIn, :GlobalTerm) is det. % % Performs rdf_global_id/2 on predixed IRIs and rdf_global_object/2 on % RDF literals, by recursively analysing the term. Note that the % predicate is a meta-predicate on the output argument. This is % necessary to get the module context while the first argument may be % of the form (:)/2. % % Terms of the form `Prefix:Local` that appear in TermIn for which % `Prefix` is not defined are not replaced. Unlike rdf_global_id/2 and % rdf_global_object/2, no error is raised. rdf_global_term(TermIn, Module:TermOut) :- rdf_global_term(TermIn, TermOut, Module). rdf_global_term(Var, Var, _M) :- var(Var), !. rdf_global_term(Prefix:Local, Global, Module) :- atom(Prefix), atom(Local), rdf_current_prefix(Module:Prefix, Full), !, atom_concat(Full, Local, Global). rdf_global_term([H0|T0], [H|T], M) :- !, rdf_global_term(H0, H, M), rdf_global_term(T0, T, M). rdf_global_term(Term0, Term, M) :- compound(Term0), !, Term0 =.. [H|L0], rdf_global_term(L0, L, M), Term =.. [H|L]. rdf_global_term(Term, Term, _). %! rdf_global_graph(+TermIn, -GlobalTerm, +Module) is det. % % Preforms rdf_global_id/2 on rdf/4, etc graph arguments rdf_global_graph(Prefix:Local, Global, Module) :- atom(Prefix), atom(Local), !, global(Prefix, Local, Global, Module). rdf_global_graph(G, G, _). /******************************* * EXPANSION * *******************************/ :- multifile system:term_expansion/2, system:goal_expansion/2. system:term_expansion((:- rdf_meta(Heads)), Clauses) :- prolog_load_context(module, M), phrase(mk_clauses(Heads, M), Clauses). mk_clauses((A,B), M) --> mk_clause(A, M), mk_clauses(B, M). mk_clauses(A, M) --> mk_clause(A, M). mk_clause(Head0, M0) --> { strip_module(M0:Head0, Module, Head), valid_rdf_meta_head(Head), functor(Head, Name, Arity), functor(Unbound, Name, Arity), qualify(Module, 'rdf meta specification'/2, Decl) }, [ (:- multifile(Decl)), Module:'rdf meta specification'(Unbound, Head) ]. qualify(Module, Decl, Decl) :- prolog_load_context(module, Module), !. qualify(Module, Decl, Module:Decl). valid_rdf_meta_head(Head) :- callable(Head), !, Head =.. [_|Args], valid_args(Args). valid_rdf_meta_head(Head) :- throw(error(type_error(callable, Head), _)). valid_args([]). valid_args([H|T]) :- valid_arg(H), !, valid_args(T). valid_arg(:). % meta argument valid_arg(+). % non-var valid_arg(-). % var valid_arg(?). % either var or non-var valid_arg(@). % not modified valid_arg(r). % RDF resource valid_arg(o). % RDF object valid_arg(t). % term with RDF resources valid_arg(g). % graph argument valid_arg(A) :- throw(error(type_error(rdf_meta_argument, A), _)). %! rdf_meta(+Heads) % % This directive defines the argument types of the named % predicates, which will force compile time namespace expansion % for these predicates. Heads is a coma-separated list of callable % terms. Defined argument properties are: % % $ : : % Argument is a goal. The goal is processed using expand_goal/2, % recursively applying goal transformation on the argument. % % $ + : % The argument is instantiated at entry. Nothing is changed. % % $ - : % The argument is not instantiated at entry. Nothing is changed. % % $ ? : % The argument is unbound or instantiated at entry. Nothing is % changed. % % $ @ : % The argument is not changed. % % $ r : % The argument must be a resource. If it is a term % _prefix_:_local_ it is translated. % % $ o : % The argument is an object or resource. See % rdf_global_object/2. % % $ t : % The argument is a term that must be translated. Expansion will % translate all occurences of _prefix_:_local_ appearing % anywhere in the term. See rdf_global_term/2. % % As it is subject to term_expansion/2, the rdf_meta/1 declaration % can only be used as a directive. The directive must be processed % before the definition of the predicates as well as before % compiling code that uses the rdf meta-predicates. The atom % =rdf_meta= is declared as an operator exported from % library(semweb/rdf_db). Files using rdf_meta/1 must explicitely % load this library. % % Beginning with SWI-Prolog 7.3.17, the low-level RDF interface % (rdf/3, rdf_assert/3, etc.) perform runtime expansion of % `Prefix:Local` terms. This eliminates the need for rdf_meta/1 % for simple cases. However, runtime expansion comes at a % significant overhead and having two representations for IRIs (a % plain atom and a term `Prefix:Local`) implies that simple % operations such as comparison of IRIs no longer map to native % Prolog operations such as `IRI1 == IRI2`. rdf_meta(Heads) :- throw(error(context_error(nodirective, rdf_meta(Heads)), _)). %! rdf_meta_specification(+General, +Module, -Spec) is semidet. % % True when Spec is the RDF meta specification for Module:General. % % @arg General is the term Spec with all arguments replaced with % variables. rdf_meta_specification(Unbounded, Module, Spec) :- '$flushed_predicate'(Module:'rdf meta specification'(_,_)), call(Module:'rdf meta specification'(Unbounded, Spec)). system:goal_expansion(G, Expanded) :- \+ predicate_property(G, iso), prolog_load_context(module, LM), predicate_property(LM:G, implementation_module(IM)), rdf_meta_specification(G, IM, Spec), rdf_expand(G, Spec, Expanded, LM). system:term_expansion(Fact, Expanded) :- prolog_load_context(module, Module), rdf_meta_specification(Fact, Module, Spec), rdf_expand(Fact, Spec, Expanded, Module), Fact \== Expanded. system:term_expansion((Head :- Body), (Expanded :- Body)) :- prolog_load_context(module, Module), rdf_meta_specification(Head, Module, Spec), rdf_expand(Head, Spec, Expanded, Module), Head \== Expanded. rdf_expand(G, Spec, Expanded, M) :- functor(G, Name, Arity), functor(Expanded, Name, Arity), rdf_expand_args(0, Arity, G, Spec, Expanded, M). rdf_expand_args(Arity, Arity, _, _, _, _) :- !. rdf_expand_args(I0, Arity, Goal, Spec, Expanded, M) :- I is I0 + 1, arg(I, Goal, GA), arg(I, Spec, SA), arg(I, Expanded, EA), rdf_expand_arg(SA, GA, EA, M), rdf_expand_args(I, Arity, Goal, Spec, Expanded, M). rdf_expand_arg(r, A, E, M) :- mk_global(A, E, M), !. rdf_expand_arg(o, A, E, M) :- rdf_global_object(A, E, M), !. rdf_expand_arg(t, A, E, M) :- rdf_global_term(A, E, M), !. rdf_expand_arg(g, A, E, M) :- rdf_global_graph(A, E, M), !. rdf_expand_arg(:, A, E, _M) :- !, expand_goal(A, E). rdf_expand_arg(_, A, A, _M). %! mk_global(+Src, -Resource, +Module) % % Realised rdf_global_id(+, -), but adds compiletime checking, % notably to see whether a namespace is not yet defined. mk_global(X, X, _) :- var(X), !. mk_global(X, X, _) :- atom(X), !. mk_global(Prefix:Local, Global, Module) :- must_be(atom, Prefix), must_be(atom, Local), ( rdf_current_prefix(Module:Prefix, Full) -> atom_concat(Full, Local, Global) ; current_prolog_flag(xref, true) -> Global = Prefix:Local ; existence_error(rdf_prefix, Prefix) ). :- rdf_meta rdf(r,r,o), rdf_has(r,r,o,r), rdf_has(r,r,o), rdf_assert(r,r,o), rdf_retractall(r,r,o), rdf(r,r,o,?), rdf_assert(r,r,o,+), rdf_retractall(r,r,o,?), rdf_reachable(r,r,o), rdf_reachable(r,r,o,+,?), rdf_update(r,r,o,t), rdf_update(r,r,o,+,t), rdf_equal(o,o), rdf_source_location(r,-), rdf_resource(r), rdf_subject(r), rdf_create_graph(r), rdf_graph(r), rdf_graph_property(r,?), rdf_set_graph(r,+), rdf_unload_graph(r), rdf_set_predicate(r, t), rdf_predicate_property(r, -), rdf_estimate_complexity(r,r,r,-), rdf_print_predicate_cloud(r,+). %! rdf_equal(?Resource1, ?Resource2) % % Simple equality test to exploit goal-expansion rdf_equal(Resource, Resource). %! lang_equal(+Lang1, +Lang2) is semidet. % % True if two RFC language specifiers denote the same language % % @see lang_matches/2. lang_equal(Lang, Lang) :- !. lang_equal(Lang1, Lang2) :- downcase_atom(Lang1, LangCannon), downcase_atom(Lang2, LangCannon). %! lang_matches(+Lang, +Pattern) is semidet. % % True if Lang matches Pattern. This implements XML language % matching conform RFC 4647. Both Lang and Pattern are % dash-separated strings of identifiers or (for Pattern) the % wildcart *. Identifiers are matched case-insensitive and a * % matches any number of identifiers. A short pattern is the same % as *. /******************************* * BASIC TRIPLE QUERIES * *******************************/ %! rdf(?Subject, ?Predicate, ?Object) is nondet. % % Elementary query for triples. Subject and Predicate are atoms % representing the fully qualified URL of the resource. Object is % either an atom representing a resource or literal(Value) if the % object is a literal value. If a value of the form % NameSpaceID:LocalName is provided it is expanded to a ground % atom using expand_goal/2. This implies you can use this % construct in compiled code without paying a performance penalty. % Literal values take one of the following forms: % % * Atom % If the value is a simple atom it is the textual representation % of a string literal without explicit type or language % qualifier. % % * lang(LangID, Atom) % Atom represents the text of a string literal qualified with % the given language. % % * type(TypeID, Value) % Used for attributes qualified using the =|rdf:datatype|= % TypeID. The Value is either the textual representation or a % natural Prolog representation. See the option % convert_typed_literal(:Convertor) of the parser. The storage % layer provides efficient handling of atoms, integers (64-bit) % and floats (native C-doubles). All other data is represented % as a Prolog record. % % For literal querying purposes, Object can be of the form % literal(+Query, -Value), where Query is one of the terms below. % If the Query takes a literal argument and the value has a % numeric type numerical comparison is performed. % % * plain(+Text) % Perform exact match and demand the language or type qualifiers % to match. This query is fully indexed. % % * icase(+Text) % Perform a full but case-insensitive match. This query is % fully indexed. % % * exact(+Text) % Same as icase(Text). Backward compatibility. % % * substring(+Text) % Match any literal that contains Text as a case-insensitive % substring. The query is not indexed on Object. % % * word(+Text) % Match any literal that contains Text delimited by a non % alpha-numeric character, the start or end of the string. The % query is not indexed on Object. % % * prefix(+Text) % Match any literal that starts with Text. This call is intended % for completion. The query is indexed using the skip list of % literals. % % * ge(+Literal) % Match any literal that is equal or larger then Literal in the % ordered set of literals. % % * gt(+Literal) % Match any literal that is larger then Literal in the ordered set % of literals. % % * eq(+Literal) % Match any literal that is equal to Literal in the ordered set % of literals. % % * le(+Literal) % Match any literal that is equal or smaller then Literal in the % ordered set of literals. % % * lt(+Literal) % Match any literal that is smaller then Literal in the ordered set % of literals. % % * between(+Literal1, +Literal2) % Match any literal that is between Literal1 and Literal2 in the % ordered set of literals. This may include both Literal1 and % Literal2. % % * like(+Pattern) % Match any literal that matches Pattern case insensitively, % where the `*' character in Pattern matches zero or more % characters. % % Backtracking never returns duplicate triples. Duplicates can be % retrieved using rdf/4. The predicate rdf/3 raises a type-error % if called with improper arguments. If rdf/3 is called with a % term literal(_) as Subject or Predicate object it fails % silently. This allows for graph matching goals like % rdf(S,P,O),rdf(O,P2,O2) to proceed without errors. %! rdf(?Subject, ?Predicate, ?Object, ?Source) is nondet. % % As rdf/3 but in addition query the graph to which the triple % belongs. Unlike rdf/3, this predicate does not remove duplicates % from the result set. % % @param Source is a term Graph:Line. If Source is instatiated, % passing an atom is the same as passing Atom:_. %! rdf_has(?Subject, +Predicate, ?Object) is nondet. % % Succeeds if the triple rdf(Subject, Predicate, Object) is true % exploiting the rdfs:subPropertyOf predicate as well as inverse % predicates declared using rdf_set_predicate/2 with the % =inverse_of= property. %! rdf_has(?Subject, +Predicate, ?Object, -RealPredicate) is nondet. % % Same as rdf_has/3, but RealPredicate is unified to the actual % predicate that makes this relation true. RealPredicate must be % Predicate or an rdfs:subPropertyOf Predicate. If an inverse % match is found, RealPredicate is the term inverse_of(Pred). %! rdf_reachable(?Subject, +Predicate, ?Object) is nondet. % % Is true if Object can be reached from Subject following the % transitive predicate Predicate or a sub-property thereof, while % repecting the symetric(true) or inverse_of(P2) properties. % % If used with either Subject or Object unbound, it first returns % the origin, followed by the reachable nodes in breath-first % search-order. The implementation internally looks one solution % ahead and succeeds deterministically on the last solution. This % predicate never generates the same node twice and is robust % against cycles in the transitive relation. % % With all arguments instantiated, it succeeds deterministically % if a path can be found from Subject to Object. Searching starts % at Subject, assuming the branching factor is normally lower. A % call with both Subject and Object unbound raises an % instantiation error. The following example generates all % subclasses of rdfs:Resource: % % == % ?- rdf_reachable(X, rdfs:subClassOf, rdfs:'Resource'). % X = 'http://www.w3.org/2000/01/rdf-schema#Resource' ; % X = 'http://www.w3.org/2000/01/rdf-schema#Class' ; % X = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property' ; % ... % == %! rdf_reachable(?Subject, +Predicate, ?Object, +MaxD, -D) is nondet. % % Same as rdf_reachable/3, but in addition, MaxD limits the number % of edges expanded and D is unified with the `distance' between % Subject and Object. Distance 0 means Subject and Object are the % same resource. MaxD can be the constant =infinite= to impose no % distance-limit. %! rdf_subject(?Resource) is nondet. % % True if Resource appears as a subject. This query respects the % visibility rules implied by the logical update view. % % @see rdf_resource/1. rdf_subject(Resource) :- rdf_resource(Resource), ( rdf(Resource, _, _) -> true ). %! rdf_resource(?Resource) is nondet. % % True when Resource is a resource used as a subject or object in % a triple. % % This predicate is primarily intended as a way to process all % resources without processing resources twice. The user must be % aware that some of the returned resources may not appear in any % _visible_ triple. /******************************* * TRIPLE MODIFICATIONS * *******************************/ %! rdf_assert(+Subject, +Predicate, +Object) is det. % % Assert a new triple into the database. This is equivalent to % rdf_assert/4 using Graph =user=. Subject and Predicate are % resources. Object is either a resource or a term literal(Value). % See rdf/3 for an explanation of Value for typed and language % qualified literals. All arguments are subject to name-space % expansion. Complete duplicates (including the same graph and % `line' and with a compatible `lifespan') are not added to the % database. %! rdf_assert(+Subject, +Predicate, +Object, +Graph) is det. % % As rdf_assert/3, adding the predicate to the indicated named % graph. % % @param Graph is either the name of a graph (an atom) or a term % Graph:Line, where Line is an integer that denotes a line number. %! rdf_retractall(?Subject, ?Predicate, ?Object) is det. % % Remove all matching triples from the database. As % rdf_retractall/4 using an unbound graph. %! rdf_retractall(?Subject, ?Predicate, ?Object, ?Graph) is det. % % As rdf_retractall/3, also matching Graph. This is particulary % useful to remove all triples coming from a loaded file. See also % rdf_unload/1. %! rdf_update(+Subject, +Predicate, +Object, +Action) is det. % % Replaces one of the three fields on the matching triples % depending on Action: % % * subject(Resource) % Changes the first field of the triple. % * predicate(Resource) % Changes the second field of the triple. % * object(Object) % Changes the last field of the triple to the given resource or % literal(Value). % * graph(Graph) % Moves the triple from its current named graph to Graph. %! rdf_update(+Subject, +Predicate, +Object, +Graph, +Action) is det % % As rdf_update/4 but allows for specifying the graph. /******************************* * COLLECTIONS * *******************************/ %! rdf_member_property(?Prop, ?Index) % % Deal with the rdf:_1, ... properties. term_expansion(member_prefix(x), member_prefix(Prefix)) :- rdf_db:ns(rdf, NS), atom_concat(NS, '_', Prefix). member_prefix(x). rdf_member_property(P, N) :- integer(N), !, member_prefix(Prefix), atom_concat(Prefix, N, P). rdf_member_property(P, N) :- member_prefix(Prefix), atom_concat(Prefix, Sub, P), atom_number(Sub, N). /******************************* * ANONYMOUS SUBJECTS * *******************************/ %! rdf_node(-Id) % % Generate a unique blank node identifier for a subject. % % @deprecated New code should use rdf_bnode/1. rdf_node(Resource) :- rdf_bnode(Resource). %! rdf_bnode(-Id) % % Generate a unique anonymous identifier for a subject. rdf_bnode(Value) :- repeat, gensym('_:genid', Value), \+ rdf(Value, _, _), \+ rdf(_, _, Value), \+ rdf(_, Value, _), !. /******************************* * TYPES * *******************************/ %! rdf_is_bnode(+Id) % % Tests if a resource is a blank node (i.e. is an anonymous % resource). A blank node is represented as an atom that starts % with =|_:|=. For backward compatibility reason, =|__|= is also % considered to be a blank node. % % @see rdf_bnode/1. %! rdf_is_resource(@Term) is semidet. % % True if Term is an RDF resource. Note that this is merely a % type-test; it does not mean this resource is involved in any % triple. Blank nodes are also considered resources. % % @see rdf_is_bnode/1 rdf_is_resource(Term) :- atom(Term). %! rdf_is_literal(@Term) is semidet. % % True if Term is an RDF literal object. Currently only checks for % groundness and the literal functor. rdf_is_literal(literal(Value)) :- ground(Value). /******************************* * LITERALS * *******************************/ %! rdf_current_literal(-Literal) is nondet. % % True when Literal is a currently known literal. Enumerates each % unique literal exactly once. Note that it is possible that the % literal only appears in already deleted triples. Deleted triples % may be locked due to active queries, transactions or snapshots % or may not yet be reclaimed by the garbage collector. %! rdf_literal_value(+Literal, -Value) is semidet. % % True when value is the appropriate Prolog representation of % Literal in the RDF _|value space|_. Current mapping: % % | Plain literals | Atom | % | Language tagged literal | Atom holding plain text | % | xsd:string | Atom | % | rdf:XMLLiteral | XML DOM Tree | % | Numeric XSD type | Number | % % @tbd Well, this is the long-term idea. % @tbd Add mode (-,+) :- rdf_meta rdf_literal_value(o, -), typed_value(r, +, -), numeric_value(r, +, -). rdf_literal_value(literal(String), Value) :- atom(String), !, Value = String. rdf_literal_value(literal(lang(_Lang, String)), String). rdf_literal_value(literal(type(Type, String)), Value) :- typed_value(Type, String, Value). typed_value(Numeric, String, Value) :- xsdp_numeric_uri(Numeric, NumType), !, numeric_value(NumType, String, Value). typed_value(xsd:string, String, String). typed_value(rdf:'XMLLiteral', Value, DOM) :- ( atom(Value) -> setup_call_cleanup( ( atom_to_memory_file(Value, MF), open_memory_file(MF, read, In, [free_on_close(true)]) ), load_structure(stream(In), DOM, [dialect(xml)]), close(In)) ; DOM = Value ). numeric_value(xsd:integer, String, Value) :- atom_number(String, Value), integer(Value). numeric_value(xsd:float, String, Value) :- atom_number(String, Number), Value is float(Number). numeric_value(xsd:double, String, Value) :- atom_number(String, Number), Value is float(Number). numeric_value(xsd:decimal, String, Value) :- atom_number(String, Value). /******************************* * SOURCE * *******************************/ %! rdf_source_location(+Subject, -Location) is nondet. % % True when triples for Subject are loaded from Location. % % @param Location is a term File:Line. rdf_source_location(Subject, Source) :- findall(Source, rdf(Subject, _, _, Source), Sources), sort(Sources, Unique), member(Source, Unique). /******************************* * GARBAGE COLLECT * *******************************/ %! rdf_create_gc_thread % % Create the garbage collection thread. :- public rdf_create_gc_thread/0. rdf_create_gc_thread :- thread_create(rdf_gc_loop, _, [ alias('__rdf_GC') ]). %! rdf_gc_loop % % Take care of running the RDF garbage collection. This predicate % is called from a thread started by creating the RDF DB. rdf_gc_loop :- catch(rdf_gc_loop(0), E, recover_gc(E)). recover_gc('$aborted') :- !, thread_self(Me), thread_detach(Me). recover_gc(Error) :- print_message(error, Error), rdf_gc_loop. rdf_gc_loop(CPU) :- repeat, ( consider_gc(CPU) -> rdf_gc(CPU1), sleep(CPU1) ; sleep(0.1) ), fail. %! rdf_gc(-CPU) is det. % % Run RDF GC one time. CPU is the amount of CPU time spent. We % update this in Prolog because portable access to thread specific % CPU is really hard in C. rdf_gc(CPU) :- statistics(cputime, CPU0), ( rdf_gc_ -> statistics(cputime, CPU1), CPU is CPU1-CPU0, rdf_add_gc_time(CPU) ; CPU = 0.0 ). %! rdf_gc is det. % % Run the RDF-DB garbage collector until no garbage is left and % all tables are fully optimized. Under normal operation a % seperate thread with identifier =__rdf_GC= performs garbage % collection as long as it is considered `useful'. % % Using rdf_gc/0 should only be needed to ensure a fully clean % database for analysis purposes such as leak detection. rdf_gc :- has_garbage, !, rdf_gc(_), rdf_gc. rdf_gc. %! has_garbage is semidet. % % True if there is something to gain using GC. has_garbage :- rdf_gc_info_(Info), has_garbage(Info), !. has_garbage(Info) :- arg(2, Info, Garbage), Garbage > 0. has_garbage(Info) :- arg(3, Info, Reindexed), Reindexed > 0. has_garbage(Info) :- arg(4, Info, Optimizable), Optimizable > 0. %! consider_gc(+CPU) is semidet. % % @param CPU is the amount of CPU time spent in the most recent % GC. consider_gc(_CPU) :- ( rdf_gc_info_(gc_info(Triples, % Total #triples in DB Garbage, % Garbage triples in DB Reindexed, % Reindexed & not reclaimed Optimizable, % Non-optimized tables _KeepGen, % Oldest active generation _LastGCGen, % Oldest active gen at last GC _ReindexGen, _LastGCReindexGen)) -> ( (Garbage+Reindexed) * 5 > Triples ; Optimizable > 4 ) ; print_message(error, rdf(invalid_gc_info)), sleep(10) ), !. /******************************* * STATISTICS * *******************************/ %! rdf_statistics(?KeyValue) is nondet. % % Obtain statistics on the RDF database. Defined statistics are: % % * graphs(-Count) % Number of named graphs % % * triples(-Count) % Total number of triples in the database. This is the number % of asserted triples minus the number of retracted ones. The % number of _visible_ triples in a particular context may be % different due to visibility rules defined by the logical % update view and transaction isolation. % % * resources(-Count) % Number of resources that appear as subject or object in a % triple. See rdf_resource/1. % % * properties(-Count) % Number of current predicates. See rdf_current_predicate/1. % % * literals(-Count) % Number of current literals. See rdf_current_literal/1. % % * gc(GCCount, ReclaimedTriples, ReindexedTriples, Time) % Information about the garbage collector. % % * searched_nodes(-Count) % Number of nodes expanded by rdf_reachable/3 and % rdf_reachable/5. % % * lookup(rdf(S,P,O,G), Count) % Number of queries that have been performed for this particular % instantiation pattern. Each of S,P,O,G is either + or -. % Fails in case the number of performed queries is zero. % % * hash_quality(rdf(S,P,O,G), Buckets, Quality, PendingResize) % Statistics on the index for this pattern. Indices are created % lazily on the first relevant query. % % * triples_by_graph(Graph, Count) % This statistics is produced for each named graph. See % =triples= for the interpretation of this value. rdf_statistics(graphs(Count)) :- rdf_statistics_(graphs(Count)). rdf_statistics(triples(Count)) :- rdf_statistics_(triples(Count)). rdf_statistics(duplicates(Count)) :- rdf_statistics_(duplicates(Count)). rdf_statistics(lingering(Count)) :- rdf_statistics_(lingering(Count)). rdf_statistics(resources(Count)) :- rdf_statistics_(resources(Count)). rdf_statistics(properties(Count)) :- rdf_statistics_(predicates(Count)). rdf_statistics(literals(Count)) :- rdf_statistics_(literals(Count)). rdf_statistics(gc(Count, Reclaimed, Reindexed, Time)) :- rdf_statistics_(gc(Count, Reclaimed, Reindexed, Time)). rdf_statistics(searched_nodes(Count)) :- rdf_statistics_(searched_nodes(Count)). rdf_statistics(lookup(Index, Count)) :- functor(Indexed, indexed, 16), rdf_statistics_(Indexed), index(Index, I), Arg is I + 1, arg(Arg, Indexed, Count), Count \== 0. rdf_statistics(hash_quality(Index, Size, Quality,Optimize)) :- rdf_statistics_(hash_quality(List)), member(hash(Place,Size,Quality,Optimize), List), index(Index, Place). rdf_statistics(triples_by_graph(Graph, Count)) :- rdf_graph_(Graph, Count). index(rdf(-,-,-,-), 0). index(rdf(+,-,-,-), 1). index(rdf(-,+,-,-), 2). index(rdf(+,+,-,-), 3). index(rdf(-,-,+,-), 4). index(rdf(+,-,+,-), 5). index(rdf(-,+,+,-), 6). index(rdf(+,+,+,-), 7). index(rdf(-,-,-,+), 8). index(rdf(+,-,-,+), 9). index(rdf(-,+,-,+), 10). index(rdf(+,+,-,+), 11). index(rdf(-,-,+,+), 12). index(rdf(+,-,+,+), 13). index(rdf(-,+,+,+), 14). index(rdf(+,+,+,+), 15). /******************************* * PREDICATES * *******************************/ %! rdf_current_predicate(?Predicate) is nondet. % % True when Predicate is a currently known predicate. Predicates % are created if a triples is created that uses this predicate or % a property of the predicate is set using rdf_set_predicate/2. % The predicate may (no longer) have triples associated with it. % % Note that resources that have =|rdf:type|= =|rdf:Property|= are % not automatically included in the result-set of this predicate, % while _all_ resources that appear as the second argument of a % triple _are_ included. % % @see rdf_predicate_property/2. rdf_current_predicate(P, DB) :- rdf_current_predicate(P), ( rdf(_,P,_,DB) -> true ). %! rdf_predicate_property(?Predicate, ?Property) % % Query properties of a defined predicate. Currently defined % properties are given below. % % * symmetric(Bool) % True if the predicate is defined to be symetric. I.e., {A} P % {B} implies {B} P {A}. Setting symmetric is equivalent to % inverse_of(Self). % % * inverse_of(Inverse) % True if this predicate is the inverse of Inverse. This % property is used by rdf_has/3, rdf_has/4, rdf_reachable/3 and % rdf_reachable/5. % % * transitive(Bool) % True if this predicate is transitive. This predicate is % currently not used. It might be used to make rdf_has/3 imply % rdf_reachable/3 for transitive predicates. % % * triples(Triples) % Unify Triples with the number of existing triples using this % predicate as second argument. Reporting the number of triples % is intended to support query optimization. % % * rdf_subject_branch_factor(-Float) % Unify Float with the average number of triples associated with % each unique value for the subject-side of this relation. If % there are no triples the value 0.0 is returned. This value is % cached with the predicate and recomputed only after % substantial changes to the triple set associated to this % relation. This property is intended for path optimalisation % when solving conjunctions of rdf/3 goals. % % * rdf_object_branch_factor(-Float) % Unify Float with the average number of triples associated with % each unique value for the object-side of this relation. In % addition to the comments with the subject_branch_factor % property, uniqueness of the object value is computed from the % hash key rather than the actual values. % % * rdfs_subject_branch_factor(-Float) % Same as =rdf_subject_branch_factor=, but also considering % triples of `subPropertyOf' this relation. See also rdf_has/3. % % * rdfs_object_branch_factor(-Float) % Same as =rdf_object_branch_factor=, but also considering % triples of `subPropertyOf' this relation. See also rdf_has/3. % % @see rdf_set_predicate/2. rdf_predicate_property(P, Prop) :- var(P), !, rdf_current_predicate(P), rdf_predicate_property_(P, Prop). rdf_predicate_property(P, Prop) :- rdf_predicate_property_(P, Prop). %! rdf_set_predicate(+Predicate, +Property) is det. % % Define a property of the predicate. This predicate currently % supports the following properties: % % - symmetric(+Boolean) % Set/unset the predicate as being symmetric. Using % symmetric(true) is the same as inverse_of(Predicate), % i.e., creating a predicate that is the inverse of % itself. % - transitive(+Boolean) % Sets the transitive property. % - inverse_of(+Predicate2) % Define Predicate as the inverse of Predicate2. An inverse % relation is deleted using inverse_of([]). % % The `transitive` property is currently not used. The `symmetric` % and `inverse_of` properties are considered by rdf_has/3,4 and % rdf_reachable/3. % % @tbd Maintain these properties based on OWL triples. /******************************* * SNAPSHOTS * *******************************/ %! rdf_snapshot(-Snapshot) is det. % % Take a snapshot of the current state of the RDF store. Later, % goals may be executed in the context of the database at this % moment using rdf_transaction/3 with the =snapshot= option. A % snapshot created outside a transaction exists until it is % deleted. Snapshots taken inside a transaction can only be used % inside this transaction. %! rdf_delete_snapshot(+Snapshot) is det. % % Delete a snapshot as obtained from rdf_snapshot/1. After this % call, resources used for maintaining the snapshot become subject % to garbage collection. %! rdf_current_snapshot(?Term) is nondet. % % True when Term is a currently known snapshot. % % @bug Enumeration of snapshots is slow. rdf_current_snapshot(Term) :- current_blob(Term, rdf_snapshot). /******************************* * TRANSACTION * *******************************/ %! rdf_transaction(:Goal) is semidet. % % Same as rdf_transaction(Goal, user, []). See rdf_transaction/3. %! rdf_transaction(:Goal, +Id) is semidet. % % Same as rdf_transaction(Goal, Id, []). See rdf_transaction/3. %! rdf_transaction(:Goal, +Id, +Options) is semidet. % % Run Goal in an RDF transaction. Compared to the ACID model, % RDF transactions have the following properties: % % 1. Modifications inside the transactions become all atomically % visible to the outside world if Goal succeeds or remain % invisible if Goal fails or throws an exception. I.e., % the _atomicy_ property is fully supported. % 2. _Consistency_ is not guaranteed. Later versions may % implement consistency constraints that will be checked % serialized just before the actual commit of a transaction. % 3. Concurrently executing transactions do not infuence each % other. I.e., the _isolation_ property is fully supported. % 4. _Durability_ can be activated by loading % library(semweb/rdf_persistency). % % Processed options are: % % * snapshot(+Snapshot) % Execute Goal using the state of the RDF store as stored in % Snapshot. See rdf_snapshot/1. Snapshot can also be the % atom =true=, which implies that an anonymous snapshot is % created at the current state of the store. Modifications % due to executing Goal are only visible to Goal. rdf_transaction(Goal) :- rdf_transaction(Goal, user, []). rdf_transaction(Goal, Id) :- rdf_transaction(Goal, Id, []). %! rdf_active_transaction(?Id) is nondet. % % True if Id is the identifier of a transaction in the context of % which this call is executed. If Id is not instantiated, % backtracking yields transaction identifiers starting with the % innermost nested transaction. Transaction identifier terms are % not copied, need not be ground and can be instantiated during % the transaction. rdf_active_transaction(Id) :- rdf_active_transactions_(List), member(Id, List). %! rdf_monitor(:Goal, +Options) % % Call Goal if specified actions occur on the database. rdf_monitor(Goal, Options) :- monitor_mask(Options, 0xffff, Mask), rdf_monitor_(Goal, Mask). monitor_mask([], Mask, Mask). monitor_mask([H|T], Mask0, Mask) :- update_mask(H, Mask0, Mask1), monitor_mask(T, Mask1, Mask). update_mask(-X, Mask0, Mask) :- !, monitor_mask(X, M), Mask is Mask0 /\ \M. update_mask(+X, Mask0, Mask) :- !, monitor_mask(X, M), Mask is Mask0 \/ M. update_mask(X, Mask0, Mask) :- monitor_mask(X, M), Mask is Mask0 \/ M. %! monitor_mask(Name, Mask) % % Mask bit for the monitor events. Note that this must be kept % consistent with the enum broadcast_id defined in rdf_db.c % C-defined broadcasts monitor_mask(assert, 0x0001). monitor_mask(assert(load), 0x0002). monitor_mask(retract, 0x0004). monitor_mask(update, 0x0008). monitor_mask(new_literal, 0x0010). monitor_mask(old_literal, 0x0020). monitor_mask(transaction, 0x0040). monitor_mask(load, 0x0080). monitor_mask(create_graph, 0x0100). monitor_mask(reset, 0x0200). % prolog defined broadcasts monitor_mask(parse, 0x1000). monitor_mask(unload, 0x1000). % FIXME: Duplicate % mask for all monitor_mask(all, 0xffff). %rdf_broadcast(Term, MaskName) :- %% monitor_mask(MaskName, Mask), %% rdf_broadcast_(Term, Mask). /******************************* * WARM * *******************************/ %! rdf_warm_indexes % % Warm all indexes. See rdf_warm_indexes/1. rdf_warm_indexes :- findall(Index, rdf_index(Index), Indexes), rdf_warm_indexes(Indexes). rdf_index(s). rdf_index(p). rdf_index(o). rdf_index(sp). rdf_index(o). rdf_index(po). rdf_index(spo). rdf_index(g). rdf_index(sg). rdf_index(pg). %! rdf_warm_indexes(+Indexes) is det. % % Create the named indexes. Normally, the RDF database creates % indexes on lazily the first time they are needed. This predicate % serves two purposes: it provides an explicit way to make sure % that the required indexes are present and creating multiple % indexes at the same time is more efficient. /******************************* * DUPLICATES * *******************************/ %! rdf_update_duplicates is det. % % Update the duplicate administration of the RDF store. This marks % every triple that is potentionally a duplicate of another as % duplicate. Being potentially a duplicate means that subject, % predicate and object are equivalent and the life-times of the % two triples overlap. % % The duplicates marks are used to reduce the administrative load % of avoiding duplicate answers. Normally, the duplicates are % marked using a background thread that is started on the first % query that produces a substantial amount of duplicates. :- public rdf_update_duplicates_thread/0. %! rdf_update_duplicates_thread % % Start a thread to initialize the duplicate administration. rdf_update_duplicates_thread :- thread_create(rdf_update_duplicates, _, [ detached(true), alias('__rdf_duplicate_detecter') ]). %! rdf_update_duplicates is det. % % Update the duplicate administration. If this adminstration is % up-to-date, each triples that _may_ have a duplicate is flagged. % The predicate rdf/3 uses this administration to speedup checking % for duplicate answers. % % This predicate is normally executed from a background thread % named =__rdf_duplicate_detecter= which is created when a query % discovers that checking for duplicates becomes too expensive. /******************************* * QUICK BINARY LOAD/SAVE * *******************************/ %! rdf_save_db(+File) is det. %! rdf_save_db(+File, +Graph) is det. % % Save triples into File in a quick-to-load binary format. If Graph % is supplied only triples flagged to originate from that database % are added. Files created this way can be loaded using % rdf_load_db/1. :- create_prolog_flag(rdf_triple_format, 3, [type(integer)]). rdf_save_db(File) :- current_prolog_flag(rdf_triple_format, Version), setup_call_cleanup( open(File, write, Out, [type(binary)]), ( set_stream(Out, record_position(false)), rdf_save_db_(Out, _, Version) ), close(Out)). rdf_save_db(File, Graph) :- current_prolog_flag(rdf_triple_format, Version), setup_call_cleanup( open(File, write, Out, [type(binary)]), ( set_stream(Out, record_position(false)), rdf_save_db_(Out, Graph, Version) ), close(Out)). %! rdf_load_db_no_admin(+File, +Id, -Graphs) is det. % % Load triples from a .trp file without updating the source % administration. Id is handled to monitor action. Graphs is % a list of graph-names encountered in File. rdf_load_db_no_admin(File, Id, Graphs) :- open(File, read, In, [type(binary)]), set_stream(In, record_position(false)), call_cleanup(rdf_load_db_(In, Id, Graphs), close(In)). %! check_loaded_cache(+Graph, +Graphs, +Modified) is det. % % Verify the loaded cache file and optionally fix the modification % time (new versions save this along with the snapshot). % % @tbd What to do if there is a cache mismatch? Delete the loaded % graphs and fail? check_loaded_cache(DB, [DB], _Modified) :- !. check_loaded_cache(DB, Graphs, _) :- print_message(warning, rdf(inconsistent_cache(DB, Graphs))). %! rdf_load_db(+File) is det. % % Load triples from a file created using rdf_save_db/2. rdf_load_db(File) :- uri_file_name(URL, File), rdf_load_db_no_admin(File, URL, _Graphs). /******************************* * LOADING RDF * *******************************/ :- multifile rdf_open_hook/8, rdf_open_decode/4, % +Encoding, +File, -Stream, -Cleanup rdf_load_stream/3, % +Format, +Stream, +Options rdf_file_type/2, % ?Extension, ?Format rdf_storage_encoding/2, % ?Extension, ?Encoding url_protocol/1. % ?Protocol %! rdf_load(+FileOrList) is det. % % Same as rdf_load(FileOrList, []). See rdf_load/2. %! rdf_load(+FileOrList, :Options) is det. % % Load RDF data. Options provides additional processing options. % Defined options are: % % * blank_nodes(+ShareMode) % How to handle equivalent blank nodes. If =share= (default), % equivalent blank nodes are shared in the same resource. % % * base_uri(+URI) % URI that is used for rdf:about="" and other RDF constructs % that are relative to the base uri. Default is the source % URL. % % * concurrent(+Jobs) % If FileOrList is a list of files, process the input files % using Jobs threads concurrently. Default is the mininum % of the number of cores and the number of inputs. Higher % values can be useful when loading inputs from (slow) % network connections. Using 1 (one) does not use % separate worker threads. % % * format(+Format) % Specify the source format explicitly. Normally this is % deduced from the filename extension or the mime-type. The % core library understands the formats xml (RDF/XML) and % triples (internal quick load and cache format). Plugins, % such as library(semweb/turtle) extend the set of recognised % extensions. % % * graph(?Graph) % Named graph in which to load the data. It is *not* allowed % to load two sources into the same named graph. If Graph is % unbound, it is unified to the graph into which the data is % loaded. The default graph is a =file://= URL when loading % a file or, if the specification is a URL, its normalized % version without the optional _|#fragment|_. % % * if(Condition) % When to load the file. One of =true=, =changed= (default) or % =not_loaded=. % % * modified(-Modified) % Unify Modified with one of =not_modified=, cached(File), % last_modified(Stamp) or =unknown=. % % * cache(Bool) % If =false=, do not use or create a cache file. % % * register_namespaces(Bool) % If =true= (default =false=), register =xmlns= namespace % declarations or Turtle =|@prefix|= prefixes using % rdf_register_prefix/3 if there is no conflict. % % * silent(+Bool) % If =true=, the message reporting completion is printed using % level =silent=. Otherwise the level is =informational=. See % also print_message/2. % % Other options are forwarded to process_rdf/3. By default, % rdf_load/2 only loads RDF/XML from files. It can be extended to % load data from other formats and locations using plugins. The % full set of plugins relevant to support different formats and % locations is below: % % == % :- use_module(library(semweb/turtle)). % Turtle and TRiG % :- use_module(library(semweb/rdf_ntriples)). % :- use_module(library(semweb/rdf_zlib_plugin)). % :- use_module(library(semweb/rdf_http_plugin)). % :- use_module(library(http/http_ssl_plugin)). % == % % @see rdf_db:rdf_open_hook/3, library(semweb/rdf_persistency) and % library(semweb/rdf_cache) :- dynamic rdf_loading/3. % Graph, Queue, Thread rdf_load(Spec) :- rdf_load(Spec, []). :- if(\+current_predicate(concurrent/3)). concurrent(_, Goals, _) :- forall(member(G, Goals), call(G)). :- endif. % Note that we kill atom garbage collection. This improves performance % with about 15% loading the LUBM Univ_50 benchmark. rdf_load(Spec, M:Options) :- must_be(list, Options), current_prolog_flag(agc_margin, Old), setup_call_cleanup( set_prolog_flag(agc_margin, 0), rdf_load_noagc(Spec, M, Options), set_prolog_flag(agc_margin, Old)). rdf_load_noagc(List, M, Options) :- is_list(List), !, flatten(List, Inputs), % Compatibility: allow nested lists maplist(must_be(ground), Inputs), length(Inputs, Count), load_jobs(Count, Jobs, Options), ( Jobs =:= 1 -> forall(member(Spec, Inputs), rdf_load_one(Spec, M, Options)) ; maplist(load_goal(Options, M), Inputs, Goals), concurrent(Jobs, Goals, []) ). rdf_load_noagc(One, M, Options) :- must_be(ground, One), rdf_load_one(One, M, Options). load_goal(Options, M, Spec, rdf_load_one(Spec, M, Options)). load_jobs(_, Jobs, Options) :- option(concurrent(Jobs), Options), !, must_be(positive_integer, Jobs). load_jobs(Count, Jobs, _) :- current_prolog_flag(cpu_count, CPUs), CPUs > 0, !, Jobs is max(1, min(CPUs, Count)). load_jobs(_, 1, _). rdf_load_one(Spec, M, Options) :- source_url(Spec, Protocol, SourceURL), load_graph(SourceURL, Graph, Options), setup_call_cleanup( with_mutex(rdf_load_file, rdf_start_load(SourceURL, Loading)), rdf_load_file(Loading, Spec, SourceURL, Protocol, Graph, M, Options), rdf_end_load(Loading)). %! rdf_start_load(+SourceURL, -WhatToDo) is det. %! rdf_end_load(+WhatToDo) is det. %! rdf_load_file(+WhatToDo, +Spec, +SourceURL, +Protocol, +Graph, %! +Module, +Options) is det. % % Of these three predicates, rdf_load_file/7 does the real work. % The others deal with the possibility that the graph is being % loaded by another thread. In that case, we wait for the other % thread to complete the work. % % @tbd What if both threads disagree on what is loaded into the % graph? % @see Code is modelled closely after how concurrent loading % is handled in SWI-Prolog's boot/init.pl rdf_start_load(SourceURL, queue(Queue)) :- rdf_loading(SourceURL, Queue, LoadThread), \+ thread_self(LoadThread), !, debug(rdf(load), '~p is being loaded by thread ~w; waiting ...', [ SourceURL, LoadThread]). rdf_start_load(SourceURL, Ref) :- thread_self(Me), message_queue_create(Queue), assertz(rdf_loading(SourceURL, Queue, Me), Ref). rdf_end_load(queue(_)) :- !. rdf_end_load(Ref) :- clause(rdf_loading(_, Queue, _), _, Ref), erase(Ref), thread_send_message(Queue, done), message_queue_destroy(Queue). rdf_load_file(queue(Queue), _Spec, _SourceURL, _Protocol, _Graph, _M, _Options) :- !, catch(thread_get_message(Queue, _), _, true). rdf_load_file(_Ref, _Spec, SourceURL, Protocol, Graph, M, Options) :- debug(rdf(load), 'RDF: Loading ~q into ~q', [SourceURL, Graph]), statistics(cputime, T0), rdf_open_input(SourceURL, Protocol, Graph, In, Cleanup, Modified, Format, Options), supported_format(Format, Cleanup), return_modified(Modified, Options), ( Modified == not_modified -> Action = none ; Modified = cached(CacheFile) -> do_unload(Graph), catch(rdf_load_db_no_admin(CacheFile, cache(Graph), Graphs), _, fail), check_loaded_cache(Graph, Graphs, Modified), Action = load ; option(base_uri(BaseURI), Options, Graph), ( var(BaseURI) -> BaseURI = SourceURL ; true ), once(phrase(derived_options(Options, NSList), Extra)), merge_options([ base_uri(BaseURI), graph(Graph), format(Format) | Extra ], Options, RDFOptions), do_unload(Graph), graph_modified(Modified, ModifiedStamp), rdf_set_graph_source(Graph, SourceURL, ModifiedStamp), call_cleanup(rdf_load_stream(Format, In, M:RDFOptions), Cleanup), save_cache(Graph, SourceURL, Options), register_file_ns(NSList), format_action(Format, Action) ), rdf_statistics_(triples(Graph, Triples)), report_loaded(Action, SourceURL, Graph, Triples, T0, Options). supported_format(Format, _Cleanup) :- rdf_file_type(_, Format), !. supported_format(Format, Cleanup) :- call(Cleanup), existence_error(rdf_format_plugin, Format). format_action(triples, load) :- !. format_action(_, parsed). save_cache(Graph, SourceURL, Options) :- option(cache(true), Options, true), rdf_cache_file(SourceURL, write, CacheFile), !, catch(save_cache(Graph, CacheFile), E, print_message(warning, E)). save_cache(_, _, _). derived_options([], _) --> []. derived_options([H|T], NSList) --> ( { H == register_namespaces(true) ; H == (register_namespaces = true) } -> [ namespaces(NSList) ] ; [] ), derived_options(T, NSList). graph_modified(last_modified(Stamp), Stamp). graph_modified(unknown, Stamp) :- get_time(Stamp). return_modified(Modified, Options) :- option(modified(M0), Options), !, M0 = Modified. return_modified(_, _). /******************************* * INPUT HANDLING * *******************************/ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - This section deals with pluggable input sources. The task of the input layer is * Decide on the graph-name * Decide on the source-location * Decide whether loading is needed (if-modified) * Decide on the serialization in the input The protocol must ensure minimal overhead, in particular for network protocols. E.g. for HTTP we want to make a single call on the server and use If-modified-since to verify that we need not reloading this file. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ %! rdf_open_input(+SourceURL, +Protocol, +Graph, %! -Stream, -Cleanup, -Modified, -Format, +Options) % % Open an input source. % % Options processed: % % * graph(Graph) % * db(Graph) % * if(Condition) % * cache(Cache) % * format(Format) % % @param Modified is one of =not_modified=, last_modified(Time), % cached(CacheFile) or =unknown= rdf_open_input(SourceURL, Protocol, Graph, Stream, Cleanup, Modified, Format, Options) :- option(if(If), Options, changed), ( If == true -> true ; rdf_graph_source_(Graph, SourceURL, HaveModified) -> true ; option(cache(true), Options, true), rdf_cache_file(SourceURL, read, CacheFile) -> time_file(CacheFile, HaveModified) ; true ), option(format(Format), Options, _), open_input_if_modified(Protocol, SourceURL, HaveModified, Stream, Cleanup, Modified0, Format, Options), ( Modified0 == not_modified -> ( nonvar(CacheFile) -> Modified = cached(CacheFile) ; Modified = not_modified ) ; Modified = Modified0 ). %! source_url(+Spec, -Class, -SourceURL) is det. % % Determine class and url of the source. Class is one of % % * stream(Stream) % * file % * a url-protocol (e.g., =http=) source_url(stream(In), stream(In), SourceURL) :- !, ( stream_property(In, file_name(File)) -> to_url(File, SourceURL) ; gensym('stream://', SourceURL) ). source_url(Stream, Class, SourceURL) :- is_stream(Stream), !, source_url(stream(Stream), Class, SourceURL). source_url(Spec, Protocol, SourceURL) :- compound(Spec), !, source_file(Spec, Protocol, SourceURL). source_url(FileURL, Protocol, SourceURL) :- % or return FileURL? uri_file_name(FileURL, File), !, source_file(File, Protocol, SourceURL). source_url(SourceURL0, Protocol, SourceURL) :- is_url(SourceURL0, Protocol, SourceURL), !. source_url(File, Protocol, SourceURL) :- source_file(File, Protocol, SourceURL). source_file(Spec, file(SExt), SourceURL) :- findall(Ext, valid_extension(Ext), Exts), absolute_file_name(Spec, File, [access(read), extensions([''|Exts])]), storage_extension(_Plain, SExt, File), uri_file_name(SourceURL, File). to_url(URL, URL) :- uri_is_global(URL), !. to_url(File, URL) :- absolute_file_name(File, Path), uri_file_name(URL, Path). storage_extension(Plain, SExt, File) :- file_name_extension(Plain, SExt, File), SExt \== '', rdf_storage_encoding(SExt, _), !. storage_extension(File, '', File). %! load_graph(+SourceURL, -Graph, +Options) is det. % % Graph is the graph into which we load the data. Tries these % options: % % 1. The graph(Graph) option % 2. The db(Graph) option (backward compatibility) % 3. The base_uri(BaseURI) option % 4. The source URL load_graph(Source, Graph, Options) :- ( option(graph(Graph), Options) ; option(db(Graph), Options) ), !, load_graph2(Source, Graph, Options). load_graph(Source, Graph, Options) :- load_graph2(Source, Graph, Options). load_graph2(_, Graph, _) :- ground(Graph), !. load_graph2(_Source, Graph, Options) :- option(base_uri(Graph), Options), Graph \== [], ground(Graph), !. load_graph2(Source, Graph, _) :- load_graph(Source, Graph). load_graph(SourceURL, BaseURI) :- file_name_extension(BaseURI, Ext, SourceURL), rdf_storage_encoding(Ext, _), !. load_graph(SourceURL, SourceURL). open_input_if_modified(stream(In), SourceURL, _, In, true, unknown, Format, _) :- !, ( var(Format) -> guess_format(SourceURL, Format) ; true ). open_input_if_modified(file(SExt), SourceURL, HaveModified, Stream, Cleanup, Modified, Format, _) :- !, uri_file_name(SourceURL, File), ( SExt == '' -> Plain = File; file_name_extension(Plain, SExt, File)), time_file(File, LastModified), ( nonvar(HaveModified), HaveModified >= LastModified -> Modified = not_modified, Cleanup = true ; storage_open(SExt, File, Stream, Cleanup), Modified = last_modified(LastModified), ( var(Format) -> guess_format(Plain, Format) ; true ) ). open_input_if_modified(file, SourceURL, HaveModified, Stream, Cleanup, Modified, Format, Options) :- !, open_input_if_modified(file(''), SourceURL, HaveModified, Stream, Cleanup, Modified, Format, Options). open_input_if_modified(Protocol, SourceURL, HaveModified, Stream, Cleanup, Modified, Format, Options) :- rdf_open_hook(Protocol, SourceURL, HaveModified, Stream, Cleanup, Modified, Format, Options). guess_format(File, Format) :- file_name_extension(_, Ext, File), ( rdf_file_type(Ext, Format) -> true ; Format = xml, print_message(warning, rdf(guess_format(Ext))) ). %! storage_open(+Extension, +File, -Stream, -Cleanup) % % Open the low-level storage. Note that the file is opened as % binary. This is the same as for HTTP resources. The correct % encoding will be set by the XML parser or the Turtle parser. storage_open('', File, Stream, close(Stream)) :- !, open(File, read, Stream, [type(binary)]). storage_open(Ext, File, Stream, Cleanup) :- rdf_storage_encoding(Ext, Encoding), rdf_open_decode(Encoding, File, Stream, Cleanup). valid_extension(Ext) :- rdf_file_type(Ext, _). valid_extension(Ext) :- rdf_storage_encoding(Ext, _). %! is_url(@Term, -Scheme, -URL) is semidet. % % True if Term is an atom denoting URL of the given Scheme. URL is % normalized (see uri_normalized/2) and a possible fragment % identifier (#fragment) is removed. This predicate only succeeds % if the scheme is registered using the multifile hook % url_protocol/1. is_url(URL, Scheme, FetchURL) :- atom(URL), uri_is_global(URL), uri_normalized(URL, URL1), % case normalization uri_components(URL1, Components), uri_data(scheme, Components, Scheme0), url_protocol(Scheme0), !, Scheme = Scheme0, uri_data(fragment, Components, _, Components1), uri_components(FetchURL, Components1). url_protocol(file). % built-in %! rdf_file_type(+Extension, -Format) is semidet. % % True if Format is the format belonging to the given file % extension. This predicate is multifile and can thus be extended % by plugins. rdf_file_type(xml, xml). rdf_file_type(rdf, xml). rdf_file_type(rdfs, xml). rdf_file_type(owl, xml). rdf_file_type(htm, xhtml). rdf_file_type(html, xhtml). rdf_file_type(xhtml, xhtml). rdf_file_type(trp, triples). %! rdf_file_encoding(+Extension, -Format) is semidet. % % True if Format describes the storage encoding of file. rdf_storage_encoding('', plain). %! rdf_load_stream(+Format, +Stream, :Options) % % Load RDF data from Stream. % % @tbd Handle mime-types? rdf_load_stream(xml, Stream, Options) :- !, graph(Options, Graph), rdf_transaction(load_stream(Stream, Options), parse(Graph)). rdf_load_stream(xhtml, Stream, M:Options) :- !, graph(Options, Graph), rdf_transaction(load_stream(Stream, M:[embedded(true)|Options]), parse(Graph)). rdf_load_stream(triples, Stream, Options) :- !, graph(Options, Graph), rdf_load_db_(Stream, Graph, _Graphs). load_stream(Stream, M:Options) :- process_rdf(Stream, assert_triples, M:Options), option(graph(Graph), Options), rdf_graph_clear_modified_(Graph). %! report_loaded(+Action, +Source, +DB, +Triples, +StartCPU, +Options) report_loaded(none, _, _, _, _, _) :- !. report_loaded(Action, Source, DB, Triples, T0, Options) :- statistics(cputime, T1), Time is T1 - T0, ( option(silent(true), Options) -> Level = silent ; Level = informational ), print_message(Level, rdf(loaded(Action, Source, DB, Triples, Time))). %! rdf_unload(+Source) is det. % % Identify the graph loaded from Source and use rdf_unload_graph/1 % to erase this graph. % % @deprecated For compatibility, this predicate also accepts a % graph name instead of a source specification. % Please update your code to use % rdf_unload_graph/1. rdf_unload(Spec) :- source_url(Spec, _Protocol, SourceURL), rdf_graph_source_(Graph, SourceURL, _), !, rdf_unload_graph(Graph). rdf_unload(Graph) :- atom(Graph), rdf_graph(Graph), !, warn_deprecated_unload(Graph), rdf_unload_graph(Graph). rdf_unload(_). :- dynamic warned/0. warn_deprecated_unload(_) :- warned, !. warn_deprecated_unload(Graph) :- assertz(warned), print_message(warning, rdf(deprecated(rdf_unload(Graph)))). %! rdf_unload_graph(+Graph) is det. % % Remove Graph from the RDF store. Succeeds silently if the named % graph does not exist. rdf_unload_graph(Graph) :- must_be(atom, Graph), ( rdf_graph(Graph) -> rdf_transaction(do_unload(Graph), unload(Graph)) ; true ). do_unload(Graph) :- ( rdf_graph_(Graph, Triples), Triples > 0 -> rdf_retractall(_,_,_,Graph) ; true ), rdf_destroy_graph(Graph). /******************************* * GRAPH QUERIES * *******************************/ %! rdf_create_graph(+Graph) is det. % % Create an RDF graph without triples. Succeeds silently if the % graph already exists. %! rdf_graph(?Graph) is nondet. % % True when Graph is an existing graph. rdf_graph(Graph) :- rdf_graph_(Graph, _Triples). %! rdf_source(?Graph, ?SourceURL) is nondet. % % True if named Graph is loaded from SourceURL. % % @deprecated Use rdf_graph_property(Graph, source(SourceURL)). rdf_source(Graph, SourceURL) :- rdf_graph(Graph), rdf_graph_source_(Graph, SourceURL, _Modified). %! rdf_source(?Source) % % True if Source is a loaded source. % % @deprecated Use rdf_graph/1 or rdf_source/2. rdf_source(SourceURL) :- rdf_source(_Graph, SourceURL). %! rdf_make % % Reload all loaded files that have been modified since the last % time they were loaded. rdf_make :- findall(Source-Graph, modified_graph(Source, Graph), Modified), forall(member(Source-Graph, Modified), catch(rdf_load(Source, [graph(Graph), if(changed)]), E, print_message(error, E))). modified_graph(SourceURL, Graph) :- rdf_graph(Graph), rdf_graph_source_(Graph, SourceURL, Modified), \+ sub_atom(SourceURL, 0, _, _, 'stream://'), Modified > 0. %! rdf_graph_property(?Graph, ?Property) is nondet. % % True when Property is a property of Graph. Defined properties % are: % % * hash(Hash) % Hash is the (MD5-)hash for the content of Graph. % * modified(Boolean) % True if the graph is modified since it was loaded or % rdf_set_graph/2 was called with modified(false). % * source(Source) % The graph is loaded from the Source (a URL) % * source_last_modified(?Time) % Time is the last-modified timestamp of Source at the moment % that the graph was loaded from Source. % * triples(Count) % True when Count is the number of triples in Graph. % % Additional graph properties can be added by defining rules for % the multifile predicate property_of_graph/2. Currently, the % following extensions are defined: % % - library(semweb/rdf_persistency) % - persistent(Boolean) % Boolean is =true= if the graph is persistent. rdf_graph_property(Graph, Property) :- rdf_graph(Graph), property_of_graph(Property, Graph). :- multifile property_of_graph/2. property_of_graph(hash(Hash), Graph) :- rdf_md5(Graph, Hash). property_of_graph(modified(Boolean), Graph) :- rdf_graph_modified_(Graph, Boolean, _). property_of_graph(source(URL), Graph) :- rdf_graph_source_(Graph, URL, _). property_of_graph(source_last_modified(Time), Graph) :- rdf_graph_source_(Graph, _, Time), Time > 0.0. property_of_graph(triples(Count), Graph) :- rdf_graph_(Graph, Count). %! rdf_set_graph(+Graph, +Property) is det. % % Set properties of Graph. Defined properties are: % % * modified(false) % Set the modified state of Graph to false. rdf_set_graph(Graph, modified(Modified)) :- must_be(oneof([false]), Modified), rdf_graph_clear_modified_(Graph). %! save_cache(+DB, +Cache) is det. % % Save triples belonging to DB in the file Cache. save_cache(DB, Cache) :- current_prolog_flag(rdf_triple_format, Version), setup_call_cleanup( catch(open(Cache, write, CacheStream, [type(binary)]), _, fail), rdf_save_db_(CacheStream, DB, Version), close(CacheStream)). %! assert_triples(+Triples, +Source) % % Assert a list of triples into the database. Foir security % reasons we check we aren't inserting anything but nice RDF % triples. assert_triples([], _). assert_triples([rdf(S,P,O)|T], DB) :- !, rdf_assert(S, P, O, DB), assert_triples(T, DB). assert_triples([H|_], _) :- throw(error(type_error(rdf_triple, H), _)). /******************************* * RESET * *******************************/ %! rdf_reset_db % % Remove all triples from the RDF database and reset all its % statistics. % % @bug This predicate checks for active queries, but this check is % not properly synchronized and therefore the use of this % predicate is unsafe in multi-threaded contexts. It is % mainly used to run functionality tests that need to % start with an empty database. rdf_reset_db :- reset_gensym('_:genid'), rdf_reset_db_. /******************************* * SAVE RDF * *******************************/ %! rdf_save(+Out) is det. % % Same as rdf_save(Out, []). See rdf_save/2 for details. %! rdf_save(+Out, :Options) is det. % % Write RDF data as RDF/XML. Options is a list of one or more of % the following options: % % * graph(+Graph) % Save only triples associated to the given named Graph. % % * anon(Bool) % If false (default true) do not save blank nodes that do % not appear (indirectly) as object of a named resource. % % * base_uri(URI) % BaseURI used. If present, all URIs that can be % represented relative to this base are written using % their shorthand. See also =write_xml_base= option % % * convert_typed_literal(:Convertor) % Call Convertor(-Type, -Content, +RDFObject), providing % the opposite for the convert_typed_literal option of % the RDF parser. % % * document_language(+Lang) % Initial xml:lang saved with rdf:RDF element % % * encoding(Encoding) % Encoding for the output. Either utf8 or iso_latin_1 % % * inline(+Bool) % If =true= (default =false=), inline resources when % encountered for the first time. Normally, only bnodes % are handled this way. % % * namespaces(+List) % Explicitely specify saved namespace declarations. See % rdf_save_header/2 option namespaces for details. % % * sorted(+Boolean) % If =true= (default =false=), emit subjects sorted on % the full URI. Useful to make file comparison easier. % % * write_xml_base(Bool) % If =false=, do _not_ include the =|xml:base|= % declaration that is written normally when using the % =base_uri= option. % % * xml_attributes(+Bool) % If =false= (default =true=), never use xml attributes to % save plain literal attributes, i.e., always used an XML % element as in =|Joe|=. % % @param Out Location to save the data. This can also be a % file-url (=|file://path|=) or a stream wrapped % in a term stream(Out). % @see rdf_save_db/1 :- thread_local named_anon/2, % +Resource, -Id inlined/1. % +Resource rdf_save(File) :- rdf_save2(File, []). rdf_save(Spec, M:Options0) :- is_list(Options0), !, meta_options(save_meta_option, M:Options0, Options), to_file(Spec, File), rdf_save2(File, Options). rdf_save(Spec, _:DB) :- atom(DB), % backward compatibility !, to_file(Spec, File), rdf_save2(File, [graph(DB)]). save_meta_option(convert_typed_literal). to_file(URL, File) :- atom(URL), uri_file_name(URL, File), !. to_file(File, File). rdf_save2(File, Options) :- option(encoding(Encoding), Options, utf8), valid_encoding(Encoding), open_output(File, Encoding, Out, Close), flag(rdf_db_saved_subjects, OSavedSubjects, 0), flag(rdf_db_saved_triples, OSavedTriples, 0), call_cleanup(rdf_do_save(Out, Options), Reason, cleanup_save(Reason, File, OSavedSubjects, OSavedTriples, Close)). open_output(stream(Out), Encoding, Out, set_stream(Out, encoding(Old))) :- !, stream_property(Out, encoding(Old)), set_stream(Out, encoding(Encoding)). open_output(File, Encoding, Out, close(Out)) :- open(File, write, Out, [encoding(Encoding)]). valid_encoding(Enc) :- ( xml_encoding_name(Enc, _) -> true ; throw(error(domain_error(encoding, Enc), _)) ). cleanup_save(Reason, File, OSavedSubjects, OSavedTriples, Close) :- call(Close), flag(rdf_db_saved_subjects, SavedSubjects, OSavedSubjects), flag(rdf_db_saved_triples, SavedTriples, OSavedTriples), retractall(named_anon(_, _)), retractall(inlined(_)), ( Reason == exit -> print_message(informational, rdf(saved(File, SavedSubjects, SavedTriples))) ; format(user_error, 'Reason = ~w~n', [Reason]) ). rdf_do_save(Out, Options0) :- rdf_save_header(Out, Options0, Options), graph(Options, DB), ( option(sorted(true), Options, false) -> ( var(DB) -> setof(Subject, rdf_subject(Subject), Subjects) ; findall(Subject, rdf(Subject, _, _, DB:_), SubjectList), sort(SubjectList, Subjects) ), forall(member(Subject, Subjects), rdf_save_non_anon_subject(Out, Subject, Options)) ; forall(rdf_subject_in_graph(Subject, DB), rdf_save_non_anon_subject(Out, Subject, Options)) ), rdf_save_footer(Out), !. % dubious cut; without the % cleanup handlers isn't called!? %! rdf_subject_in_graph(-Subject, ?DB) is nondet. % % True when Subject is a subject in the graph DB. If DB is unbound, % all subjects are enumerated. Otherwise we have two options: % enumerate all subjects and filter by graph or collect all triples of % the graph and get the unique subjects. The first is attractive if % the graph is big compared to the DB, also because it does not % require memory, the second if the graph is small compared to the DB. rdf_subject_in_graph(Subject, DB) :- var(DB), !, rdf_subject(Subject). rdf_subject_in_graph(Subject, DB) :- rdf_statistics(triples(AllTriples)), rdf_graph_property(DB, triples(DBTriples)), DBTriples > AllTriples // 10, !, rdf_resource(Subject), ( rdf(Subject, _, _, DB:_) -> true ). rdf_subject_in_graph(Subject, DB) :- findall(Subject, rdf(Subject, _, _, DB:_), SubjectList), list_to_set(SubjectList, Subjects), member(Subject, Subjects). graph(Options0, DB) :- strip_module(Options0, _, Options), ( memberchk(graph(DB0), Options) -> DB = DB0 ; memberchk(db(DB0), Options) -> DB = DB0 ; true % leave unbound ). %! rdf_save_header(+Fd, +Options) % % Save XML document header, doctype and open the RDF environment. % This predicate also sets up the namespace notation. % % Save an RDF header, with the XML header, DOCTYPE, ENTITY and % opening the rdf:RDF element with appropriate namespace % declarations. It uses the primitives from section 3.5 to % generate the required namespaces and desired short-name. Options % is one of: % % * graph(+URI) % Only search for namespaces used in triples that belong to the % given named graph. % % * namespaces(+List) % Where List is a list of namespace abbreviations. With this % option, the expensive search for all namespaces that may be % used by your data is omitted. The namespaces =rdf= and =rdfs= % are added to the provided List. If a namespace is not % declared, the resource is emitted in non-abreviated form. rdf_save_header(Out, Options) :- rdf_save_header(Out, Options, _). rdf_save_header(Out, Options, OptionsOut) :- is_list(Options), !, stream_property(Out, encoding(Enc)), xml_encoding(Enc, Encoding), format(Out, '~n', [Encoding]), format(Out, '', [Id, NSText]) )), format(Out, '~N]>~n~n', []), format(Out, ' xml_quote_attribute(Base, BaseText, Enc), format(Out, '~N xml:base="~w"~n', [BaseText]) ; true ), ( memberchk(document_language(Lang), Options) -> format(Out, '~N xml:lang="~w"', [Lang]) ; true ), format(Out, '>~n', []). rdf_save_header(Out, FileRef, OptionsOut) :- % compatibility atom(FileRef), rdf_save_header(Out, [graph(FileRef)], OptionsOut). xml_encoding(Enc, Encoding) :- ( xml_encoding_name(Enc, Encoding) -> true ; throw(error(domain_error(rdf_encoding, Enc), _)) ). xml_encoding_name(ascii, 'US-ASCII'). xml_encoding_name(iso_latin_1, 'ISO-8859-1'). xml_encoding_name(utf8, 'UTF-8'). %! nsmap(+NSIds, -Map:list(id=uri)) is det. % % Create a namespace-map that is compatible to xml_write/2 % for dealing with XML-Literals nsmap([], []). nsmap([Id|T0], [Id=URI|T]) :- ns(Id, URI), nsmap(T0, T). %! xml_escape_parameter_entity(+In, -Out) is det. % % Escape % as % for entity declarations. xml_escape_parameter_entity(In, Out) :- sub_atom(In, _, _, _, '%'), !, atom_codes(In, Codes), phrase(escape_parent(Codes), OutCodes), atom_codes(Out, OutCodes). xml_escape_parameter_entity(In, In). escape_parent([]) --> []. escape_parent([H|T]) --> ( { H == 37 } -> "%" ; [H] ), escape_parent(T). %! header_namespaces(Options, -List) % % Get namespaces we will define as entities header_namespaces(Options, List) :- memberchk(namespaces(NSL0), Options), !, sort([rdf,rdfs|NSL0], List). header_namespaces(Options, List) :- graph(Options, DB), used_namespace_entities(List, DB). %! rdf_graph_prefixes(?Graph, -List:ord_set) is det. %! rdf_graph_prefixes(?Graph, -List:ord_set, :Options) is det. % % List is a sorted list of prefixes (namepaces) in Graph. Options % defined are: % % * filter(:Filter) % optional Filter argument is used to filter the results. It % is called with 3 additional arguments: % % == % call(Filter, Where, Prefix, URI) % == % % The Where argument gives the location of the prefix ans is % one of =subject=, =predicate=, =object= or =type=. The % Prefix argument is the potentionally new prefix and URI is % the full URI that is being processed. % % * expand(:Goal) % Hook to generate the graph. Called using % % == % call(Goal,S,P,O,Graph) % == % % * min_count(+Count) % Only include prefixes that appear at least N times. Default % is 1. Declared prefixes are always returned if found at % least one time. % % * get_prefix(:GetPrefix) % Predicate to extract the candidate prefix from an IRI. Default % is iri_xml_namespace/2. :- thread_local graph_prefix/3. :- meta_predicate rdf_graph_prefixes(?, -, :). rdf_graph_prefixes(Graph, List) :- rdf_graph_prefixes(Graph, List, []). rdf_graph_prefixes(Graph, List, M:QOptions) :- is_list(QOptions), !, meta_options(is_meta, M:QOptions, Options), option(filter(Filter), Options, true), option(expand(Expand), Options, rdf_db), option(min_count(MinCount), Options, 1), option(get_prefix(GetPrefix), Options, iri_xml_namespace), call_cleanup(prefixes(Expand, Graph, Prefixes, Filter, MinCount, GetPrefix), retractall(graph_prefix(_,_,_))), sort(Prefixes, List). rdf_graph_prefixes(Graph, List, M:Filter) :- rdf_graph_prefixes(Graph, List, M:[filter(Filter)]). is_meta(filter). is_meta(expand). is_meta(get_prefix). prefixes(Expand, Graph, Prefixes, Filter, MinCount, GetPrefix) :- ( call(Expand, S, P, O, Graph), add_ns(subject, GetPrefix, Filter, S, MinCount, s(S)), add_ns(predicate, GetPrefix, Filter, P, MinCount, sp(S,P)), add_ns_obj(GetPrefix, Filter, O, MinCount, spo(S,P,O)), fail ; true ), findall(Prefix, graph_prefix(Prefix, MinCount, _), Prefixes). add_ns(Where, GetPrefix, Filter, S, MinCount, Context) :- \+ rdf_is_bnode(S), call(GetPrefix, S, Full), Full \== '', !, ( graph_prefix(Full, MinCount, _) -> true ; Filter == true -> add_ns(Full, Context) ; call(Filter, Where, Full, S) -> add_ns(Full, Context) ; true ). add_ns(_, _, _, _, _, _). add_ns(Full, Context) :- graph_prefix(Full, _, Contexts), memberchk(Context, Contexts), !. add_ns(Full, Context) :- retract(graph_prefix(Full, C0, Contexts)), !, C1 is C0+1, asserta(graph_prefix(Full, C1, [Context|Contexts])). add_ns(Full, _) :- ns(_, Full), !, asserta(graph_prefix(Full, _, _)). add_ns(Full, Context) :- asserta(graph_prefix(Full, 1, [Context])). add_ns_obj(GetPrefix, Filter, O, MinCount, Context) :- atom(O), !, add_ns(object, GetPrefix, Filter, O, MinCount, Context). add_ns_obj(GetPrefix, Filter, literal(type(Type, _)), MinCount, _) :- atom(Type), !, add_ns(type, GetPrefix, Filter, Type, MinCount, t(Type)). add_ns_obj(_, _, _, _, _). %! used_namespace_entities(-List, ?Graph) is det. % % Return the namespace aliases that are actually used in Graph. In % addition, this predicate creates ns aliases for namespaces % used in predicates because RDF/XML cannot write predicates other % than as an XML name. used_namespace_entities(List, Graph) :- decl_used_predicate_ns(Graph), used_namespaces(List, Graph). used_namespaces(List, DB) :- rdf_graph_prefixes(DB, FullList), ns_abbreviations(FullList, List0), sort([rdf|List0], List). ns_abbreviations([], []). ns_abbreviations([H0|T0], [H|T]) :- ns(H, H0), !, ns_abbreviations(T0, T). ns_abbreviations([_|T0], T) :- ns_abbreviations(T0, T). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - For every URL used as a predicate we *MUST* define a namespace as we cannot use names holding /, :, etc. as XML identifiers. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ :- thread_local predicate_ns/2. decl_used_predicate_ns(DB) :- retractall(predicate_ns(_,_)), ( rdf_current_predicate(P, DB), decl_predicate_ns(P), fail ; true ). decl_predicate_ns(Pred) :- predicate_ns(Pred, _), !. decl_predicate_ns(Pred) :- rdf_global_id(NS:Local, Pred), xml_name(Local), !, assert(predicate_ns(Pred, NS)). decl_predicate_ns(Pred) :- atom_codes(Pred, Codes), append(NSCodes, LocalCodes, Codes), xml_codes(LocalCodes), !, ( NSCodes \== [] -> atom_codes(NS, NSCodes), ( ns(Id, NS) -> assert(predicate_ns(Pred, Id)) ; between(1, infinite, N), atom_concat(ns, N, Id), \+ ns(Id, _) -> rdf_register_ns(Id, NS), print_message(informational, rdf(using_namespace(Id, NS))) ), assert(predicate_ns(Pred, Id)) ; assert(predicate_ns(Pred, -)) % no namespace used ). xml_codes([]). xml_codes([H|T]) :- xml_code(H), xml_codes(T). xml_code(X) :- code_type(X, csym), !. xml_code(0'-). % Match 0'- %! rdf_save_footer(Out:stream) is det. % % Finish XML generation and write the document footer. % % @see rdf_save_header/2, rdf_save_subject/3. rdf_save_footer(Out) :- retractall(named_anon(_, _)), retractall(inlined(_)), format(Out, '~n', []). %! rdf_save_non_anon_subject(+Out, +Subject, +Options) % % Save an object. Anonymous objects not saved if anon(false) % is present in the Options list. rdf_save_non_anon_subject(_Out, Subject, Options) :- rdf_is_bnode(Subject), ( memberchk(anon(false), Options) ; graph(Options, DB), rdf_db(_, _, Subject, DB) ), !. rdf_save_non_anon_subject(Out, Subject, Options) :- rdf_save_subject(Out, Subject, Options), flag(rdf_db_saved_subjects, X, X+1). %! rdf_save_subject(+Out, +Subject:resource, +Options) is det. % % Save the triples associated to Subject to Out. Options: % % * graph(+Graph) % Only save properties from Graph. % * base_uri(+URI) % * convert_typed_literal(:Goal) % * document_language(+XMLLang) % % @see rdf_save/2 for a description of these options. rdf_save_subject(Out, Subject, Options) :- is_list(Options), !, option(base_uri(BaseURI), Options, '-'), ( rdf_save_subject(Out, Subject, BaseURI, 0, Options) -> format(Out, '~n', []) ; throw(error(rdf_save_failed(Subject), 'Internal error')) ). rdf_save_subject(Out, Subject, DB) :- ( var(DB) -> rdf_save_subject(Out, Subject, []) ; rdf_save_subject(Out, Subject, [graph(DB)]) ). %! rdf_save_subject(+Out:stream, +Subject:resource, +BaseURI, %! +Indent:int, +Options) is det. % % Save properties of Subject. % % @param Indent Current indentation rdf_save_subject(_, Subject, _, _, _) :- inlined(Subject), !. rdf_save_subject(Out, Subject, BaseURI, Indent, Options) :- do_save_subject(Out, Subject, BaseURI, Indent, Options). do_save_subject(Out, Subject, BaseURI, Indent, Options) :- graph(Options, DB), findall(Pred=Object, rdf_db(Subject, Pred, Object, DB), Atts0), sort(Atts0, Atts), % remove duplicates length(Atts, L), ( length(Atts0, L0), Del is L0-L, Del > 0 -> print_message(informational, rdf(save_removed_duplicates(Del, Subject))) ; true ), rdf_save_subject(Out, Subject, BaseURI, Atts, Indent, Options), flag(rdf_db_saved_triples, X, X+L). rdf_db(Subject, Pred, Object, DB) :- var(DB), !, rdf(Subject, Pred, Object). rdf_db(Subject, Pred, Object, DB) :- rdf(Subject, Pred, Object, DB:_). %! rdf_save_subject(+Out:stream, +Subject:resource, +BaseURI, %! +Atts:list(Pred=Obj), +Indent:int, +Options) is det. % % Save triples defined by Atts on Subject. rdf_save_subject(Out, Subject, BaseURI, Atts, Indent, Options) :- rdf_equal(rdf:type, RdfType), select(RdfType=Type, Atts, Atts1), \+ rdf_is_bnode(Type), rdf_id(Type, BaseURI, TypeId), xml_is_name(TypeId), !, format(Out, '~*|<', [Indent]), rdf_write_id(Out, TypeId), save_about(Out, BaseURI, Subject), save_attributes(Atts1, BaseURI, Out, TypeId, Indent, Options). rdf_save_subject(Out, Subject, BaseURI, Atts, Indent, Options) :- format(Out, '~*| format(Out, ' rdf:nodeID="~w"', [NodeID]) ; true ). save_about(Out, BaseURI, Subject) :- stream_property(Out, encoding(Encoding)), rdf_value(Subject, BaseURI, QSubject, Encoding), format(Out, ' rdf:about="~w"', [QSubject]). %! save_attributes(+List, +BaseURI, +Stream, +Element, +Indent, +Options) % % Save the attributes. Short literal attributes are saved in the % tag. Others as the content of the description element. The % begin tag has already been filled. save_attributes(Atts, BaseURI, Out, Element, Indent, Options) :- split_attributes(Atts, InTag, InBody, Options), SubIndent is Indent + 2, save_attributes2(InTag, BaseURI, tag, Out, SubIndent, Options), ( InBody == [] -> format(Out, '/>~n', []) ; format(Out, '>~n', []), save_attributes2(InBody, BaseURI, body, Out, SubIndent, Options), format(Out, '~N~*|~n', []) ). %! split_attributes(+Attributes, -HeadAttrs, -BodyAttr, Options) % % Split attribute (Name=Value) list into attributes for the head % and body. Attributes can only be in the head if they are literal % and appear only one time in the attribute list. split_attributes(Atts, [], Atts, Options) :- option(xml_attributes(false), Options), !. split_attributes(Atts, HeadAttr, BodyAttr, _) :- duplicate_attributes(Atts, Dupls, Singles), simple_literal_attributes(Singles, HeadAttr, Rest), append(Dupls, Rest, BodyAttr). %! duplicate_attributes(+Attrs, -Duplicates, -Singles) % % Extract attributes that appear more than onces as we cannot % dublicate an attribute in the head according to the XML rules. duplicate_attributes([], [], []). duplicate_attributes([H|T], Dupls, Singles) :- H = (Name=_), named_attributes(Name, T, D, R), D \== [], append([H|D], Dupls2, Dupls), !, duplicate_attributes(R, Dupls2, Singles). duplicate_attributes([H|T], Dupls2, [H|Singles]) :- duplicate_attributes(T, Dupls2, Singles). named_attributes(_, [], [], []) :- !. named_attributes(Name, [H|T], D, R) :- ( H = (Name=_) -> D = [H|DT], named_attributes(Name, T, DT, R) ; R = [H|RT], named_attributes(Name, T, D, RT) ). %! simple_literal_attributes(+Attributes, -Inline, -Body) % % Split attributes for (literal) attributes to be used in the % begin-tag and ones that have to go into the body of the description. simple_literal_attributes([], [], []). simple_literal_attributes([H|TA], [H|TI], B) :- in_tag_attribute(H), !, simple_literal_attributes(TA, TI, B). simple_literal_attributes([H|TA], I, [H|TB]) :- simple_literal_attributes(TA, I, TB). in_tag_attribute(_=literal(Text)) :- atom(Text), % may not have lang qualifier atom_length(Text, Len), Len < 60. %! save_attributes(+List, +BaseURI, +TagOrBody, +Stream) % % Save a list of attributes. save_attributes2([], _, _, _, _, _). save_attributes2([H|T], BaseURI, Where, Out, Indent, Options) :- save_attribute(Where, H, BaseURI, Out, Indent, Options), save_attributes2(T, BaseURI, Where, Out, Indent, Options). save_attribute(tag, Name=literal(Value), BaseURI, Out, Indent, _DB) :- AttIndent is Indent + 2, rdf_id(Name, BaseURI, NameText), stream_property(Out, encoding(Encoding)), xml_quote_attribute(Value, QVal, Encoding), format(Out, '~N~*|', [AttIndent]), rdf_write_id(Out, NameText), format(Out, '="~w"', [QVal]). save_attribute(body, Name=literal(Literal0), BaseURI, Out, Indent, Options) :- !, rdf_id(Name, BaseURI, NameText), ( memberchk(convert_typed_literal(Converter), Options), call(Converter, Type, Content, Literal0) -> Literal = type(Type, Content) ; Literal = Literal0 ), save_body_literal(Literal, NameText, BaseURI, Out, Indent, Options). save_attribute(body, Name=Value, BaseURI, Out, Indent, Options) :- rdf_is_bnode(Value), !, rdf_id(Name, BaseURI, NameText), format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), ( named_anon(Value, NodeID) -> format(Out, ' rdf:nodeID="~w"/>', [NodeID]) ; ( rdf(S1, Name, Value), rdf(S2, P2, Value), (S1 \== S2 ; Name \== P2) -> predicate_property(named_anon(_,_), number_of_clauses(N)), atom_concat('bn', N, NodeID), assertz(named_anon(Value, NodeID)) ; true ), SubIndent is Indent + 2, ( rdf_collection(Value) -> save_about(Out, BaseURI, Value), format(Out, ' rdf:parseType="Collection">~n', []), rdf_save_list(Out, Value, BaseURI, SubIndent, Options) ; format(Out, '>~n', []), rdf_save_subject(Out, Value, BaseURI, SubIndent, Options) ), format(Out, '~N~*|~n', []) ). save_attribute(body, Name=Value, BaseURI, Out, Indent, Options) :- option(inline(true), Options), has_attributes(Value, Options), \+ inlined(Value), !, assertz(inlined(Value)), rdf_id(Name, BaseURI, NameText), format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), SubIndent is Indent + 2, ( rdf_collection(Value) -> save_about(Out, BaseURI, Value), format(Out, ' rdf:parseType="Collection">~n', []), rdf_save_list(Out, Value, BaseURI, SubIndent, Options) ; format(Out, '>~n', []), do_save_subject(Out, Value, BaseURI, SubIndent, Options) ), format(Out, '~N~*|~n', []). save_attribute(body, Name=Value, BaseURI, Out, Indent, _DB) :- stream_property(Out, encoding(Encoding)), rdf_value(Value, BaseURI, QVal, Encoding), rdf_id(Name, BaseURI, NameText), format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), format(Out, ' rdf:resource="~w"/>', [QVal]). has_attributes(URI, Options) :- graph(Options, DB), rdf_db(URI, _, _, DB), !. %! save_body_literal(+Literal, +NameText, +BaseURI, %! +Out, +Indent, +Options). save_body_literal(lang(Lang, Value), NameText, BaseURI, Out, Indent, Options) :- !, format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), ( memberchk(document_language(Lang), Options) -> write(Out, '>') ; rdf_id(Lang, BaseURI, LangText), format(Out, ' xml:lang="~w">', [LangText]) ), save_attribute_value(Value, Out, Indent), write(Out, ''). save_body_literal(type(Type, DOM), NameText, _BaseURI, Out, Indent, Options) :- rdf_equal(Type, rdf:'XMLLiteral'), !, ( atom(DOM) -> format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), format(Out, ' rdf:parseType="Literal">~w') ; save_xml_literal(DOM, NameText, Out, Indent, Options) ). save_body_literal(type(Type, Value), NameText, BaseURI, Out, Indent, _) :- !, format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), stream_property(Out, encoding(Encoding)), rdf_value(Type, BaseURI, QVal, Encoding), format(Out, ' rdf:datatype="~w">', [QVal]), save_attribute_value(Value, Out, Indent), write(Out, ''). save_body_literal(Literal, NameText, _, Out, Indent, _) :- atomic(Literal), !, format(Out, '~N~*|<', [Indent]), rdf_write_id(Out, NameText), write(Out, '>'), save_attribute_value(Literal, Out, Indent), write(Out, ''). save_body_literal(DOM, NameText, BaseURI, Out, Indent, Options) :- rdf_equal(Type, rdf:'XMLLiteral'), save_body_literal(type(Type, DOM), NameText, BaseURI, Out, Indent, Options). save_attribute_value(Value, Out, _) :- % strings atom(Value), !, stream_property(Out, encoding(Encoding)), xml_quote_cdata(Value, QVal, Encoding), write(Out, QVal). save_attribute_value(Value, Out, _) :- % numbers number(Value), !, writeq(Out, Value). % quoted: preserve floats save_attribute_value(Value, _Out, _) :- throw(error(save_attribute_value(Value), _)). %! save_xml_literal(+DOM, +Attr, +Out, +Indent, +Options) is det. % % Save an XMLLiteral value. We already emitted % % == % |=. We need to establish the % namespaces used in the DOM. The namespaces in the rdf document % are in the nsmap-option of Options. save_xml_literal(DOM, Attr, Out, Indent, Options) :- xml_is_dom(DOM), !, memberchk(nsmap(NsMap), Options), id_to_atom(Attr, Atom), xml_write(Out, element(Atom, ['rdf:parseType'='Literal'], DOM), [ header(false), indent(Indent), nsmap(NsMap) ]). save_xml_literal(NoDOM, _, _, _, _) :- must_be(xml_dom, NoDOM). id_to_atom(NS:Local, Atom) :- !, atomic_list_concat([NS,Local], :, Atom). id_to_atom(ID, ID). %! rdf_collection(+URI) is semidet. % % True if URI represents an RDF list that fits the RDF % parseType=collection syntax. This means it is a linked list of % bnode-cells with a rdf:first that is a resource, optionally a % rdf:type that is an rdf:list and the list ends in an rdf:nil. :- rdf_meta rdf_collection(r), collection_p(r,r). rdf_collection(rdf:nil) :- !. rdf_collection(Cell) :- rdf_is_bnode(Cell), findall(F, rdf(Cell, rdf:first, F), [_]), findall(F, rdf(Cell, rdf:rest, F), [Rest]), forall(rdf(Cell, P, V), collection_p(P, V)), rdf_collection(Rest). collection_p(rdf:first, V) :- atom(V). collection_p(rdf:rest, _). collection_p(rdf:type, rdf:'List'). %! rdf_save_list(+Out, +List, +BaseURI, +Indent, +Options) rdf_save_list(_, List, _, _, _) :- rdf_equal(List, rdf:nil), !. rdf_save_list(Out, List, BaseURI, Indent, Options) :- rdf_has(List, rdf:first, First), ( rdf_is_bnode(First) -> nl(Out), rdf_save_subject(Out, First, BaseURI, Indent, Options) ; stream_property(Out, encoding(Encoding)), rdf_value(First, BaseURI, QVal, Encoding), format(Out, '~N~*|', [Indent, QVal]) ), flag(rdf_db_saved_triples, X, X+3), ( rdf_has(List, rdf:rest, List2), \+ rdf_equal(List2, rdf:nil) -> rdf_save_list(Out, List2, BaseURI, Indent, Options) ; true ). %! rdf_id(+Resource, +BaseURI, -NSLocal) % % Generate a NS:Local name for Resource given the indicated % default namespace. This call is used for elements. rdf_id(Id, BaseURI, Local) :- assertion(atom(BaseURI)), atom_concat(BaseURI, Local, Id), sub_atom(Local, 0, 1, _, #), !. rdf_id(Id, _, NS:Local) :- iri_xml_namespace(Id, Full, Local), ns(NS, Full), !. rdf_id(Id, _, NS:Local) :- ns(NS, Full), Full \== '', atom_concat(Full, Local, Id), !. rdf_id(Id, _, Id). %! rdf_write_id(+Out, +NSLocal) is det. % % Write an identifier. We cannot use native write on it as both NS % and Local can be operators. rdf_write_id(Out, NS:Local) :- !, format(Out, '~w:~w', [NS, Local]). rdf_write_id(Out, Atom) :- write(Out, Atom). %! rdf_value(+Resource, +BaseURI, -Text, +Encoding) % % According to "6.4 RDF URI References" of the RDF Syntax % specification, a URI reference is UNICODE string not containing % control sequences, represented as UTF-8 and then as escaped % US-ASCII. rdf_value(Base, Base, '', _) :- !. rdf_value(V, Base, Text, Encoding) :- atom_concat(Base, Local, V), sub_atom(Local, 0, _, _, #), !, xml_quote_attribute(Local, Text, Encoding). rdf_value(V, _, Text, Encoding) :- ns(NS, Full), atom_concat(Full, Local, V), xml_is_name(Local), !, xml_quote_attribute(Local, QLocal, Encoding), atomic_list_concat(['&', NS, (';'), QLocal], Text). rdf_value(V, _, Q, Encoding) :- xml_quote_attribute(V, Q, Encoding). /******************************* * MATCH AND COMPARE * *******************************/ %! rdf_compare(-Dif, +Object1, +Object2) is det. % % Compare two object terms. Where SPARQL defines a partial % ordering, we define a complete ordering of terms. The ordering % is defines as: % % - Blank nodes < IRIs < Literals % - Numeric literals < other literals % - Numeric literals are compared by value and then by type, % where Integer < Decimal < Double % - Other literals are compare lexically, case insensitive. % If equal, uppercase preceeds lowercase. If still equal, % the types are compared lexically. %! rdf_match_label(+How, +Pattern, +Label) is semidet. % % True if Label matches Pattern according to How. How is one of % `icase`, `substring`, `word`, `prefix` or `like`. For backward % compatibility, `exact` is a synonym for `icase`. /******************************* * DEPRECATED MATERIAL * *******************************/ %! rdf_split_url(+Prefix, +Local, -URL) is det. %! rdf_split_url(-Prefix, -Local, +URL) is det. % % Split/join a URL. This functionality is moved to library(sgml). % % @deprecated Use iri_xml_namespace/3. Note that the argument % order is iri_xml_namespace(+IRI, -Namespace, -Localname). rdf_split_url(Prefix, Local, URL) :- atomic(URL), !, iri_xml_namespace(URL, Prefix, Local). rdf_split_url(Prefix, Local, URL) :- atom_concat(Prefix, Local, URL). %! rdf_url_namespace(+URL, -Namespace) % % Namespace is the namespace of URL. % % @deprecated Use iri_xml_namespace/2 rdf_url_namespace(URL, Prefix) :- iri_xml_namespace(URL, Prefix). /******************************* * LITERALS * *******************************/ %! rdf_new_literal_map(-Map) is det. % % Create a new literal map, returning an opaque handle. %! rdf_destroy_literal_map(+Map) is det. % % Destroy a literal map. After this call, further use of the Map % handle is illegal. Additional synchronisation is needed if maps % that are shared between threads are destroyed to guarantee the % handle is no longer used. In some scenarios % rdf_reset_literal_map/1 provides a safe alternative. %! rdf_reset_literal_map(+Map) is det. % % Delete all content from the literal map. %! rdf_insert_literal_map(+Map, +Key, +Value) is det. % % Add a relation between Key and Value to the map. If this % relation already exists no action is performed. %! rdf_insert_literal_map(+Map, +Key, +Value, -KeyCount) is det. % % As rdf_insert_literal_map/3. In addition, if Key is a new key in % Map, unify KeyCount with the number of keys in Map. This serves % two purposes. Derived maps, such as the stem and metaphone maps % need to know about new keys and it avoids additional foreign % calls for doing the progress in rdf_litindex.pl. %! rdf_delete_literal_map(+Map, +Key) is det. % % Delete Key and all associated values from the map. %! rdf_delete_literal_map(+Map, +Key, +Value) is det. % % Delete the association between Key and Value from the map. %! rdf_find_literal_map(+Map, +KeyList, -ValueList) is det. % % Unify ValueList with an ordered set of values associated to all % keys from KeyList. Each key in KeyList is either an atom, an % integer or a term not(Key). If not-terms are provided, there % must be at least one positive keywords. The negations are tested % after establishing the positive matches. %! rdf_keys_in_literal_map(+Map, +Spec, -Answer) is det. % % Realises various queries on the key-set: % % * all % % Unify Answer with an ordered list of all keys. % * key(+Key) % % Succeeds if Key is a key in the map and unify Answer with the % number of values associated with the key. This provides a fast % test of existence without fetching the possibly large % associated value set as with rdf_find_literal_map/3. % % * prefix(+Prefix) % Unify Answer with an ordered set of all keys that have the % given prefix. See section 3.1 for details on prefix matching. % Prefix must be an atom. This call is intended for % auto-completion in user interfaces. % % * ge(+Min) % Unify Answer with all keys that are larger or equal to the % integer Min. % % * le(+Max) % Unify Answer with all keys that are smaller or equal to the integer % Max. % % * between(+Min, +Max) Unify % Answer with all keys between Min and Max (including). %! rdf_statistics_literal_map(+Map, -KeyValue) % % Query some statistics of the map. Provides KeyValue are: % % * size(-Keys, -Relations) % Unify Keys with the total key-count of the index and Relation % with the total Key-Value count. /******************************* * MISC * *******************************/ %! rdf_version(-Version) is det. % % True when Version is the numerical version-id of this library. % The version is computed as % % Major*10000 + Minor*100 + Patch. %! rdf_set(+Term) is det. % % Set properties of the RDF store. Currently defines: % % * hash(+Hash, +Parameter, +Value) % Set properties for a triple index. Hash is one of =s=, % =p=, =sp=, =o=, =po=, =spo=, =g=, =sg= or =pg=. Parameter % is one of: % % - size % Value defines the number of entries in the hash-table. % Value is rounded _down_ to a power of 2. After setting % the size explicitly, auto-sizing for this table is % disabled. Setting the size smaller than the current % size results in a =permission_error= exception. % % - average_chain_len % Set maximum average collision number for the hash. % % - optimize_threshold % Related to resizing hash-tables. If 0, all triples are % moved to the new size by the garbage collector. If more % then zero, those of the last Value resize steps remain at % their current location. Leaving cells at their current % location reduces memory fragmentation and slows down % access. %! rdf_md5(+Graph, -MD5) is det. % % True when MD5 is the MD5 hash for all triples in graph. The MD5 % digest itself is represented as an atom holding a 32-character % hexadecimal string. The library maintains the digest % incrementally on rdf_load/[1,2], rdf_load_db/1, rdf_assert/[3,4] % and rdf_retractall/[3,4]. Checking whether the digest has % changed since the last rdf_load/[1,2] call provides a practical % means for checking whether the file needs to be saved. % % @deprecated New code should use rdf_graph_property(Graph, % hash(Hash)). %! rdf_generation(-Generation) is det. % % True when Generation is the current generation of the database. % Each modification to the database increments the generation. It % can be used to check the validity of cached results deduced from % the database. Committing a non-empty transaction increments the % generation by one. % % When inside a transaction, Generation is unified to a term % _TransactionStartGen_ + _InsideTransactionGen_. E.g., 4+3 means % that the transaction was started at generation 4 of the global % database and we have created 3 new generations inside the % transaction. Note that this choice of representation allows for % comparing generations using Prolog arithmetic. Comparing a % generation in one transaction with a generation in another % transaction is meaningless. %! rdf_estimate_complexity(?Subject, ?Predicate, ?Object, -Complexity) % % Return the number of alternatives as indicated by the database % internal hashed indexing. This is a rough measure for the number % of alternatives we can expect for an rdf_has/3 call using the % given three arguments. When called with three variables, the % total number of triples is returned. This estimate is used in % query optimisation. See also rdf_predicate_property/2 and % rdf_statistics/1 for additional information to help optimizers. %! rdf_debug(+Level) is det. % % Set debugging to Level. Level is an integer 0..9. Default is % 0 no debugging. %! rdf_atom_md5(+Text, +Times, -MD5) is det. % % Computes the MD5 hash from Text, which is an atom, string or list of % character codes. Times is an integer >= 1. When > 0, the MD5 % algorithm is repeated Times times on the generated hash. This can be % used for password encryption algorithms to make generate-and-test % loops slow. % % @deprecated Obviously, password hash primitives do not belong in % this library. The library(crypto) from the \const{ssl} package % provides extensive support for hashes. The \const{clib} package % provides library(crypt) to access the OS (Unix) password hash % implementation as well as lightweight implementations of several % popular hashes. /******************************* * MESSAGES * *******************************/ :- multifile prolog:message//1. prolog:message(rdf(Term)) --> message(Term). message(loaded(How, What, BaseURI, Triples, Time)) --> how(How), source(What), into(What, BaseURI), in_time(Triples, Time). message(save_removed_duplicates(N, Subject)) --> [ 'Removed ~d duplicate triples about "~p"'-[N,Subject] ]. message(saved(File, SavedSubjects, SavedTriples)) --> [ 'Saved ~D triples about ~D subjects into ~p'- [SavedTriples, SavedSubjects, File] ]. message(using_namespace(Id, NS)) --> [ 'Using namespace id ~w for ~w'-[Id, NS] ]. message(inconsistent_cache(DB, Graphs)) --> [ 'RDF cache file for ~w contains the following graphs'-[DB], nl, '~t~8|~p'-[Graphs] ]. message(guess_format(Ext)) --> [ 'Unknown file-extension: ~w. Assuming RDF/XML'-[Ext] ]. message(meta(not_expanded(G))) --> [ 'rdf_meta/1: ~p is not expanded'-[G] ]. message(deprecated(rdf_unload(Graph))) --> [ 'rdf_unload/1: Use ~q'-[rdf_unload_graph(Graph)] ]. how(load) --> [ 'Loaded' ]. how(parsed) --> [ 'Parsed' ]. source(SourceURL) --> { uri_file_name(SourceURL, File), !, file_base_name(File, Base) % TBD: relative file? }, [ ' "~w"'-[Base] ]. source(SourceURL) --> [ ' "~w"'-[SourceURL] ]. into(_, _) --> []. % TBD in_time(Triples, ParseTime) --> [ ' in ~2f sec; ~D triples'-[ParseTime, Triples] ].